These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 37367597)

  • 21. Cleaner pathway for developing bioactive textile materials using natural dyes: a review.
    Repon MR; Islam T; Islam T; Ghorab AE; Rahman MM
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):48793-48823. PubMed ID: 36879092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Method to determine the decolorization potential of persistent dyes by white rot fungi by colorimetric assays.
    Zafiu C; Küpcü S; Kähkönen MA
    MethodsX; 2022; 9():101885. PubMed ID: 36385913
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Competition strategies for the decolorization of a textile-reactive dye with the white-rot fungi Trametes versicolor under non-sterile conditions.
    Libra JA; Borchert M; Banit S
    Biotechnol Bioeng; 2003 Jun; 82(6):736-44. PubMed ID: 12673774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles.
    Islam S; Bhat G
    J Environ Manage; 2019 Dec; 251():109536. PubMed ID: 31542622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of selected natural dyes in reduction on colour changes of Egyptian linen textiles by fungi.
    Abdel-Kareem O
    Ann Chim; 2007 Jul; 97(7):527-40. PubMed ID: 17867537
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Requalification of a Brazilian Trichoderma Collection and Screening of Its Capability to Decolourise Real Textile Effluent.
    Silva Lisboa D; Santos C; Barbosa RN; Magalhães O; Paiva LM; Moreira KA; Lima N; Souza-Motta CM
    Int J Environ Res Public Health; 2017 Apr; 14(4):. PubMed ID: 28368305
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Screening for a more sustainable solution for decolorization of dyes and textile effluents using Candida and Yarrowia spp.
    Mendes M; Cassoni AC; Alves S; Pintado ME; Castro PM; Moreira P
    J Environ Manage; 2022 Apr; 307():114421. PubMed ID: 35093754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of dyes by fungi: an insight into mycoremediation.
    Rajhans G; Barik A; Sen SK; Raut S
    BioTechnologia (Pozn); 2021; 102(4):445-455. PubMed ID: 36605603
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Environmental pollution, toxicity profile, and physico-chemical and biotechnological approaches for treatment of textile wastewater.
    Dhruv Patel D; Bhatt S
    Biotechnol Genet Eng Rev; 2022 Apr; 38(1):33-86. PubMed ID: 35297320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biotechnological potential of microorganisms from textile effluent: isolation, enzymatic activity and dye discoloration.
    Bernal SPF; Lira MMA; Jean-Baptiste J; Garcia PE; Batista E; Ottoni JR; Passarini MRZ
    An Acad Bras Cienc; 2021; 93(4):e20191581. PubMed ID: 34586315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae.
    Corso CR; Almeida EJ; Santos GC; Morão LG; Fabris GS; Mitter EK
    Water Sci Technol; 2012; 65(8):1490-5. PubMed ID: 22466598
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process.
    Haddad M; Abid S; Hamdi M; Bouallagui H
    J Environ Manage; 2018 Oct; 223():936-946. PubMed ID: 30007889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties.
    Umesh M; Suresh S; Santosh AS; Prasad S; Chinnathambi A; Al Obaid S; Jhanani GK; Shanmugam S
    Environ Res; 2023 Jul; 229():115973. PubMed ID: 37088318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid-state fermentation: tool for bioremediation of adsorbed textile dyestuff on distillery industry waste-yeast biomass using isolated Bacillus cereus strain EBT1.
    Kadam AA; Kamatkar JD; Khandare RV; Jadhav JP; Govindwar SP
    Environ Sci Pollut Res Int; 2013 Feb; 20(2):1009-20. PubMed ID: 22562346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Plant microbe based remediation approaches in dye removal: A review.
    Gayathiri E; Prakash P; Selvam K; Awasthi MK; Gobinath R; Karri RR; Ragunathan MG; Jayanthi J; Mani V; Poudineh MA; Chang SW; Ravindran B
    Bioengineered; 2022 Mar; 13(3):7798-7828. PubMed ID: 35294324
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biodecolourisation of some industrial dyes by white-rot fungi.
    Chander M; Arora DS; Bath HK
    J Ind Microbiol Biotechnol; 2004 Feb; 31(2):94-7. PubMed ID: 14758557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microbial use for azo dye degradation-a strategy for dye bioremediation.
    Ajaz M; Shakeel S; Rehman A
    Int Microbiol; 2020 May; 23(2):149-159. PubMed ID: 31741129
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bioremediation concepts for treatment of dye containing wastewater: a review.
    Keharia H; Madamwar D
    Indian J Exp Biol; 2003 Sep; 41(9):1068-75. PubMed ID: 15242298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. White-rot fungi capable of decolourising textile dyes under alkaline conditions.
    Ottoni CA; Santos C; Kozakiewicz Z; Lima N
    Folia Microbiol (Praha); 2013 May; 58(3):187-93. PubMed ID: 23008155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upcycling textile waste using pyrolysis process.
    Lee HS; Jung S; Lin KA; Kwon EE; Lee J
    Sci Total Environ; 2023 Feb; 859(Pt 2):160393. PubMed ID: 36423842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.