BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 37367773)

  • 1. Application of Immersed Membrane Bioreactor for Semi-Continuous Production of Polyhydroxyalkanoates from Organic Waste-Based Volatile Fatty Acids.
    Vu DH; Mahboubi A; Root A; Heinmaa I; Taherzadeh MJ; Åkesson D
    Membranes (Basel); 2023 May; 13(6):. PubMed ID: 37367773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of different nutrient limitation strategies for the efficient production of poly(hydroxybutyrate-co-hydroxyvalerate) from waste frying oil and propionic acid in high cell density fermentations of
    Kökpınar Ö; Altun M
    Prep Biochem Biotechnol; 2023; 53(5):532-541. PubMed ID: 36007876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane bioreactor assisted volatile fatty acids production from agro-industrial residues for ruminant feed application.
    Parchami M; Uwineza C; Ibeabuchi OH; Rustas BO; Taherzadeh MJ; Mahboubi A
    Waste Manag; 2023 Oct; 170():62-74. PubMed ID: 37549528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxvalerate) from volatile fatty acids by Cupriavidus necator.
    Cai F; Lin M; Jin W; Chen C; Liu G
    J Basic Microbiol; 2023 Feb; 63(2):128-139. PubMed ID: 36192143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane bioreactor-assisted volatile fatty acids production and in situ recovery from cow manure.
    Jomnonkhaow U; Uwineza C; Mahboubi A; Wainaina S; Reungsang A; Taherzadeh MJ
    Bioresour Technol; 2021 Feb; 321():124456. PubMed ID: 33276207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Food waste-derived volatile fatty acids platform using an immersed membrane bioreactor.
    Wainaina S; Parchami M; Mahboubi A; Horváth IS; Taherzadeh MJ
    Bioresour Technol; 2019 Feb; 274():329-334. PubMed ID: 30529480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of polyhydroxyalkanoates (PHAs) by
    Vu DH; Wainaina S; Taherzadeh MJ; Åkesson D; Ferreira JA
    Bioengineered; 2021 Dec; 12(1):2480-2498. PubMed ID: 34115556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pure cultures for synthetic culture development: Next level municipal waste treatment for polyhydroxyalkanoates production.
    Khatami K; Perez-Zabaleta M; Cetecioglu Z
    J Environ Manage; 2022 Mar; 305():114337. PubMed ID: 34972045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards biodegradable polyhydroxyalkanoate production from wood waste: Using volatile fatty acids as conversion medium.
    Li D; Yin F; Ma X
    Bioresour Technol; 2020 Mar; 299():122629. PubMed ID: 31881436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas.
    Moretto G; Russo I; Bolzonella D; Pavan P; Majone M; Valentino F
    Water Res; 2020 Mar; 170():115371. PubMed ID: 31835138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Innovative co-production of polyhydroxyalkanoates and methane from broken rice.
    Brojanigo S; Alvarado-Morales M; Basaglia M; Casella S; Favaro L; Angelidaki I
    Sci Total Environ; 2022 Jun; 825():153931. PubMed ID: 35183640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile Fatty Acids as Carbon Sources for Polyhydroxyalkanoates Production.
    Szacherska K; Oleskowicz-Popiel P; Ciesielski S; Mozejko-Ciesielska J
    Polymers (Basel); 2021 Jan; 13(3):. PubMed ID: 33498279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus.
    Morgan-Sagastume F; Karlsson A; Johansson P; Pratt S; Boon N; Lant P; Werker A
    Water Res; 2010 Oct; 44(18):5196-211. PubMed ID: 20638096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Cupriavidus necator from waste rapeseed oil using propanol as a precursor of 3-hydroxyvalerate.
    Obruca S; Marova I; Snajdar O; Mravcova L; Svoboda Z
    Biotechnol Lett; 2010 Dec; 32(12):1925-32. PubMed ID: 20814716
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconversion of Organic Pollutants in Fish-Canning Wastewater into Volatile Fatty Acids and Polyhydroxyalkanoate.
    Palmeiro-Sánchez T; Campos JL; Mosquera-Corral A
    Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing the effect of non-volatile fatty acids (non-VFAs) on polyhydroxyalkanoates (PHA) production from fermented thermal-hydrolyzed sludge.
    Tu W; Zou Y; Wu M; Wang H
    Int J Biol Macromol; 2020 Jul; 155():1317-1324. PubMed ID: 31739029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyhydroxyalkanoates production from effluent of hydrogen fermentation process by Cupriavidus sp. KKU38.
    Saraphirom P; Reungsang A; Plangklang P
    Environ Technol; 2013; 34(1-4):477-83. PubMed ID: 23530362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyhydroxyalkanoate (PHA) production from sludge and municipal wastewater treatment.
    Morgan-Sagastume F; Valentino F; Hjort M; Cirne D; Karabegovic L; Gerardin F; Johansson P; Karlsson A; Magnusson P; Alexandersson T; Bengtsson S; Majone M; Werker A
    Water Sci Technol; 2014; 69(1):177-84. PubMed ID: 24434985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced lipid production by
    Gao R; Li Z; Zhou X; Bao W; Cheng S; Zheng L
    Biotechnol Biofuels; 2020; 13():3. PubMed ID: 31911818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of polyhydroxyalkanoate production in Halomonas sp. YLGW01 using mixed volatile fatty acids: a study on mixture analysis and fed-batch strategy.
    Park Y; Jeon JM; Park JK; Yang YH; Choi SS; Yoon JJ
    Microb Cell Fact; 2023 Sep; 22(1):171. PubMed ID: 37661274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.