These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

396 related articles for article (PubMed ID: 37367947)

  • 21. Complementary time-frequency domain networks for dynamic parallel MR image reconstruction.
    Qin C; Duan J; Hammernik K; Schlemper J; Küstner T; Botnar R; Prieto C; Price AN; Hajnal JV; Rueckert D
    Magn Reson Med; 2021 Dec; 86(6):3274-3291. PubMed ID: 34254355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correction of out-of-FOV motion artifacts using convolutional neural network.
    Wang C; Liang Y; Wu Y; Zhao S; Du YP
    Magn Reson Imaging; 2020 Sep; 71():93-102. PubMed ID: 32464243
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-resolution spiral real-time cardiac cine imaging with deep learning-based rapid image reconstruction and quantification.
    Wang J; Awad M; Zhou R; Wang Z; Wang X; Feng X; Yang Y; Meyer C; Kramer CM; Salerno M
    NMR Biomed; 2024 Feb; 37(2):e5051. PubMed ID: 37926525
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spatio-Temporal Deep Learning-Based Undersampling Artefact Reduction for 2D Radial Cine MRI With Limited Training Data.
    Kofler A; Dewey M; Schaeffter T; Wald C; Kolbitsch C
    IEEE Trans Med Imaging; 2020 Mar; 39(3):703-717. PubMed ID: 31403407
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time, single breath-hold, multi-slice, 2D cine radial MR image reconstruction using sc-GROG k-t ESPIRiT.
    Aslam I; Crowe LA; Kassai M; Qazi SA; Omer H; Vallée JP
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36322961
    [No Abstract]   [Full Text] [Related]  

  • 26. Automatic MR image quality evaluation using a Deep CNN: A reference-free method to rate motion artifacts in neuroimaging.
    Fantini I; Yasuda C; Bento M; Rittner L; Cendes F; Lotufo R
    Comput Med Imaging Graph; 2021 Jun; 90():101897. PubMed ID: 33770561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Temporally aware volumetric generative adversarial network-based MR image reconstruction with simultaneous respiratory motion compensation: Initial feasibility in 3D dynamic cine cardiac MRI.
    Ghodrati V; Bydder M; Bedayat A; Prosper A; Yoshida T; Nguyen KL; Finn JP; Hu P
    Magn Reson Med; 2021 Nov; 86(5):2666-2683. PubMed ID: 34254363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerated submillimeter wave-encoded magnetic resonance imaging via deep untrained neural network.
    Liu C; Cui ZX; Jia S; Cheng J; Cao C; Guo Y; Zhu Y; Liang D; Wang H
    Med Phys; 2023 Dec; 50(12):7684-7699. PubMed ID: 37073772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accelerated respiratory-resolved 4D-MRI with separable spatio-temporal neural networks.
    Terpstra ML; Maspero M; Verhoeff JJC; van den Berg CAT
    Med Phys; 2023 Sep; 50(9):5331-5342. PubMed ID: 37527331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI.
    Wu Y; Ma Y; Capaldi DP; Liu J; Zhao W; Du J; Xing L
    Magn Reson Imaging; 2020 Feb; 66():93-103. PubMed ID: 30880112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-mask self-supervised learning for physics-guided neural networks in highly accelerated magnetic resonance imaging.
    Yaman B; Gu H; Hosseini SAH; Demirel OB; Moeller S; Ellermann J; Uğurbil K; Akçakaya M
    NMR Biomed; 2022 Dec; 35(12):e4798. PubMed ID: 35789133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep Convolutional Encoder-Decoder algorithm for MRI brain reconstruction.
    Njeh I; Mzoughi H; Ben Slima M; Ben Hamida A; Mhiri C; Ben Mahfoudh K
    Med Biol Eng Comput; 2021 Jan; 59(1):85-106. PubMed ID: 33231848
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An Efficient Light-weight Network for Fast Reconstruction on MR Images.
    Zhen B; Zheng Y; Qiu B
    Curr Med Imaging; 2021; 17(11):1374-1384. PubMed ID: 33459243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automated segmentation of the left ventricle from MR cine imaging based on deep learning architecture.
    Qin W; Wu Y; Li S; Chen Y; Yang Y; Liu X; Zheng H; Liang D; Hu Z
    Biomed Phys Eng Express; 2020 Feb; 6(2):025009. PubMed ID: 33438635
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SpiNet: A deep neural network for Schatten p-norm regularized medical image reconstruction.
    Rastogi A; Yalavarthy PK
    Med Phys; 2021 May; 48(5):2214-2229. PubMed ID: 33525049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing quality and speed in database-free neural network reconstructions of undersampled MRI with SCAMPI.
    Siedler TM; Jakob PM; Herold V
    Magn Reson Med; 2024 Sep; 92(3):1232-1247. PubMed ID: 38748852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net.
    Le J; Tian Y; Mendes J; Wilson B; Ibrahim M; DiBella E; Adluru G
    Magn Reson Imaging; 2021 Nov; 83():178-188. PubMed ID: 34428512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning for improving ZTE MRI images in free breathing.
    Papp D; Castillo T JM; Wielopolski PA; Ciet P; Veenland JF; Kotek G; Hernandez-Tamames J
    Magn Reson Imaging; 2023 May; 98():97-104. PubMed ID: 36681310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. VTDCE-Net: A time invariant deep neural network for direct estimation of pharmacokinetic parameters from undersampled DCE MRI data.
    Rastogi A; Dutta A; Yalavarthy PK
    Med Phys; 2023 Mar; 50(3):1560-1572. PubMed ID: 36354289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.