These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 37367958)

  • 1. Near-Infrared Fluorescent Biosensors Based on Covalent DNA Anchors.
    Metternich JT; Wartmann JAC; Sistemich L; Nißler R; Herbertz S; Kruss S
    J Am Chem Soc; 2023 Jul; 145(27):14776-14783. PubMed ID: 37367958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guanine Quantum Defects in Carbon Nanotubes for Biosensing.
    Galonska P; Mohr JM; Schrage CA; Schnitzler L; Kruss S
    J Phys Chem Lett; 2023 Apr; 14(14):3483-3490. PubMed ID: 37011259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of Integrin Affinity by Confining RGD Peptides on Fluorescent Carbon Nanotubes.
    Polo E; Nitka TT; Neubert E; Erpenbeck L; Vuković L; Kruss S
    ACS Appl Mater Interfaces; 2018 May; 10(21):17693-17703. PubMed ID: 29708725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum defects as versatile anchors for carbon nanotube functionalization.
    Mann FA; Galonska P; Herrmann N; Kruss S
    Nat Protoc; 2022 Mar; 17(3):727-747. PubMed ID: 35110739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near-Infrared Fluorescence Lifetime Imaging of Biomolecules with Carbon Nanotubes.
    Sistemich L; Galonska P; Stegemann J; Ackermann J; Kruss S
    Angew Chem Int Ed Engl; 2023 Jun; 62(24):e202300682. PubMed ID: 36891826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neurotransmitter detection using corona phase molecular recognition on fluorescent single-walled carbon nanotube sensors.
    Kruss S; Landry MP; Vander Ende E; Lima BM; Reuel NF; Zhang J; Nelson J; Mu B; Hilmer A; Strano M
    J Am Chem Soc; 2014 Jan; 136(2):713-24. PubMed ID: 24354436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomolecular Functionalization of a Nanomaterial To Control Stability and Retention within Live Cells.
    Gravely M; Safaee MM; Roxbury D
    Nano Lett; 2019 Sep; 19(9):6203-6212. PubMed ID: 31424226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosensing with Fluorescent Carbon Nanotubes.
    Ackermann J; Metternich JT; Herbertz S; Kruss S
    Angew Chem Int Ed Engl; 2022 Apr; 61(18):e202112372. PubMed ID: 34978752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prospects of Fluorescent Single-Chirality Carbon Nanotube-Based Biosensors.
    Nißler R; Ackermann J; Ma C; Kruss S
    Anal Chem; 2022 Jul; 94(28):9941-9951. PubMed ID: 35786856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes.
    Nißler R; Kurth L; Li H; Spreinat A; Kuhlemann I; Flavel BS; Kruss S
    Anal Chem; 2021 Apr; 93(16):6446-6455. PubMed ID: 33830740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Nanotubes Encapsulated in Coiled-Coil Peptide Barrels.
    Mann FA; Horlebein J; Meyer NF; Meyer D; Thomas F; Kruss S
    Chemistry; 2018 Aug; 24(47):12241-12245. PubMed ID: 29488660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of electrical and optical transduction modes of DNA-wrapped SWCNT nanosensors for the reversible detection of neurotransmitters.
    Clément P; Ackermann J; Sahin-Solmaz N; Herbertz S; Boero G; Kruss S; Brugger J
    Biosens Bioelectron; 2022 Nov; 216():114642. PubMed ID: 36055131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Delayed Increase in Near-Infrared Fluorescence in Cultured Murine Cancer Cells Labeled with Oxygen-Doped Single-Walled Carbon Nanotubes.
    Sekiyama S; Umezawa M; Iizumi Y; Ube T; Okazaki T; Kamimura M; Soga K
    Langmuir; 2019 Jan; 35(3):831-837. PubMed ID: 30585494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins.
    Mann FA; Herrmann N; Opazo F; Kruss S
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17732-17738. PubMed ID: 32511874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-Infrared Imaging of Serotonin Release from Cells with Fluorescent Nanosensors.
    Dinarvand M; Neubert E; Meyer D; Selvaggio G; Mann FA; Erpenbeck L; Kruss S
    Nano Lett; 2019 Sep; 19(9):6604-6611. PubMed ID: 31418577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.
    Jain A; Homayoun A; Bannister CW; Yum K
    Biotechnol J; 2015 Mar; 10(3):447-59. PubMed ID: 25676253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoluminescence Dynamics Defined by Exciton Trapping Potential of Coupled Defect States in DNA-Functionalized Carbon Nanotubes.
    Zheng Y; Weight BM; Jones AC; Chandrasekaran V; Gifford BJ; Tretiak S; Doorn SK; Htoon H
    ACS Nano; 2021 Jan; 15(1):923-933. PubMed ID: 33395262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noncovalent Protein and Peptide Functionalization of Single-Walled Carbon Nanotubes for Biodelivery and Optical Sensing Applications.
    Antonucci A; Kupis-Rozmysłowicz J; Boghossian AA
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11321-11331. PubMed ID: 28299937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Readily reusable electrochemical DNA hybridization biosensor based on the interaction of DNA with single-walled carbon nanotubes.
    Zhang X; Jiao K; Liu S; Hu Y
    Anal Chem; 2009 Aug; 81(15):6006-12. PubMed ID: 20337392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratiometric Imaging of Catecholamine Neurotransmitters with Nanosensors.
    Ma C; Mohr JM; Lauer G; Metternich JT; Neutsch K; Ziebarth T; Reiner A; Kruss S
    Nano Lett; 2024 Feb; 24(7):2400-2407. PubMed ID: 38345220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.