These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 37368248)

  • 1. Laser Interference Lithography-A Method for the Fabrication of Controlled Periodic Structures.
    Liu R; Cao L; Liu D; Wang L; Saeed S; Wang Z
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.
    Gisbert Quilis N; Lequeux M; Venugopalan P; Khan I; Knoll W; Boujday S; Lamy de la Chapelle M; Dostalek J
    Nanoscale; 2018 May; 10(21):10268-10276. PubMed ID: 29790495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of multiple theories for the simulation of laser interference lithography processes.
    Lin TH; Yang YK; Fu CC
    Nanotechnology; 2017 Nov; 28(47):475301. PubMed ID: 28936985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring SERS from complex patterns fabricated by multi-exposure laser interference lithography.
    Kim SJ; Hwang JS; Park JE; Yang M; Kim S
    Nanotechnology; 2021 May; 32(31):. PubMed ID: 33892481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanopatterning by laser interference lithography: applications to optical devices.
    Seo JH; Park JH; Kim SI; Park BJ; Ma Z; Choi J; Ju BK
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1521-32. PubMed ID: 24749439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarization-dependent surface-enhanced Raman scattering (SERS) from microarrays.
    Hong KY; Brolo AG
    Anal Chim Acta; 2017 Jun; 972():73-80. PubMed ID: 28495098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation on fabrication of nanoscale patterns using laser interference lithography.
    Choi J; Chung MH; Dong KY; Park EM; Ham DJ; Park Y; Song IS; Pak JJ; Ju BK
    J Nanosci Nanotechnol; 2011 Jan; 11(1):778-81. PubMed ID: 21446544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined laser interference and photolithography patterning of a hybrid mask mold for nanoimprint lithography.
    Ahn S; Choi J; Kim E; Dong KY; Jeon H; Ju BK; Lee KB
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6039-43. PubMed ID: 22121654
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patent Review on Laser Interference Lithography Technique for Producing Periodic Nanostructure.
    Jui CW; Trappey AJC; Fu CC
    Recent Pat Nanotechnol; 2018; 12(3):231-242. PubMed ID: 30081794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 360 nm Continuous Wave Laser-Based Contact or Non-Contact Laser Interference Nano Lithography.
    Yun DH; Shin BS; Park JH; Ma YW; Gwak CY; You DB; Kim B
    J Nanosci Nanotechnol; 2020 Jan; 20(1):128-134. PubMed ID: 31383147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of aqueous antibiotic solutions using SERS nanogratings.
    Hong KY; de Albuquerque CDL; Poppi RJ; Brolo AG
    Anal Chim Acta; 2017 Aug; 982():148-155. PubMed ID: 28734354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser Fabrication of Anti-Icing Surfaces: A Review.
    Volpe A; Gaudiuso C; Ancona A
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33322237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Color Surface on Transparent PDMS Fabricated by Carbon-Assisted Laser Interference Lithography for Real-Time Quantification of Soft Actuators Motion.
    Zhang C; Chen R; Yang L; Wu H; Ji S; Zhang J; Zhou L; Ye H; Wu S; Zhang J; Wang C; Hu Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):45641-45647. PubMed ID: 32937064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced light extraction from organic light-emitting diodes using a quasi-periodic nano-structure.
    Lee JS; Shim YS; Park CH; Hwang H; Park CH; Joo CW; Park YW; Lee J; Ju BK
    Nanotechnology; 2019 Feb; 30(8):085302. PubMed ID: 30524094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large area periodic, systematically changing, multishape nanostructures by laser interference lithography and cell response to these topographies.
    Ertorer E; Vasefi F; Keshwah J; Najiminaini M; Halfpap C; Langbein U; Carson JJ; Hamilton DW; Mittler S
    J Biomed Opt; 2013 Mar; 18(3):035002. PubMed ID: 23460125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate.
    Zhang C; Yi P; Peng L; Lai X; Chen J; Huang M; Ni J
    Sci Rep; 2017 Jan; 7():39814. PubMed ID: 28051175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Fabrication of Nanostructures on Polydimethylsiloxane by Laser Interference Lithography.
    Wu J; Geng Z; Xie Y; Fan Z; Su Y; Xu C; Chen H
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30621058
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-area nanogap plasmon resonator arrays for plasmonics applications.
    Jin M; van Wolferen H; Wormeester H; van den Berg A; Carlen ET
    Nanoscale; 2012 Aug; 4(15):4712-8. PubMed ID: 22743701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patterning of periodic nano-cavities on PEDOT-PSS using nanosphere-assisted near-field optical enhancement and laser interference lithography.
    Yuan D; Lasagni A; Hendricks JL; Martin DC; Das S
    Nanotechnology; 2012 Jan; 23(1):015304. PubMed ID: 22155970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman nanodomes.
    Choi CJ; Xu Z; Wu HY; Liu GL; Cunningham BT
    Nanotechnology; 2010 Oct; 21(41):415301. PubMed ID: 20834120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.