These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 37368314)
1. Cu(II) and Mn(II) Anchored on Functionalized Mesoporous Silica with Schiff Bases: Effects of Supports and Metal-Ligand Interactions on Catalytic Activity. Mureseanu M; Filip M; Bleotu I; Spinu CI; Marin AH; Matei I; Parvulescu V Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368314 [TBL] [Abstract][Full Text] [Related]
2. Anchoring of Copper(II)-Schiff Base Complex in SBA-15 Matrix as Efficient Oxidation and Biomimetic Catalyst. Mureseanu M; Bleotu I; Spînu CI; Cioatera N Int J Mol Sci; 2024 Jan; 25(2):. PubMed ID: 38256167 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of mesoporous silica supported metallosalphen-azobenzene complexes: efficient photochromic heterogeneous catalysts for the oxidation of cyclohexane to produce KA oil. Alshehri S; Abboud M RSC Adv; 2024 Aug; 14(37):26971-26994. PubMed ID: 39193295 [TBL] [Abstract][Full Text] [Related]
4. Enantioselective Epoxidation of Styrene by Manganese Chiral Schiff Base Complexes Immobilized on MCM-41. Mandal M; Nagaraju V; Sarma B; Karunakar GV; Bania KK Chempluschem; 2015 Apr; 80(4):749-761. PubMed ID: 31973427 [TBL] [Abstract][Full Text] [Related]
5. Functionalized mesoporous silica supported copper(II) and nickel(II) catalysts for liquid phase oxidation of olefins. Nandi M; Roy P; Uyama H; Bhaumik A Dalton Trans; 2011 Dec; 40(46):12510-8. PubMed ID: 21989952 [TBL] [Abstract][Full Text] [Related]
6. Cu(II)-Schiff base covalently anchored to MIL-125(Ti)-NH Daliran S; Santiago-Portillo A; Navalón S; Oveisi AR; Álvaro M; Ghorbani-Vaghei R; Azarifar D; García H J Colloid Interface Sci; 2018 Dec; 532():700-710. PubMed ID: 30121522 [TBL] [Abstract][Full Text] [Related]
7. Click on silica: systematic immobilization of Co(II) Schiff bases to the mesoporous silica via click reaction and their catalytic activity for aerobic oxidation of alcohols. Rana BS; Jain SL; Singh B; Bhaumik A; Sain B; Sinha AK Dalton Trans; 2010 Sep; 39(33):7760-7. PubMed ID: 20657935 [TBL] [Abstract][Full Text] [Related]
8. Oxidation of p-chlorotoluene and cyclohexene catalysed by polymer-anchored oxovanadium(IV) and copper(II) complexes of amino acid derived tridentate ligands. Maurya MR; Kumar M; Kumar A; Costa Pessoa J Dalton Trans; 2008 Aug; (32):4220-32. PubMed ID: 18682861 [TBL] [Abstract][Full Text] [Related]
9. MCM-41 supported Cu-Mn catalysts for catalytic oxidation of toluene at low temperatures. Li WB; Zhuang M; Xiao TC; Green ML J Phys Chem B; 2006 Nov; 110(43):21568-71. PubMed ID: 17064108 [TBL] [Abstract][Full Text] [Related]
10. Functionalized Mesoporous Silica for Highly Selective Sensing of Iron Ion in Water. Park SS; Kong J; Selvaraj M; Ha CS J Nanosci Nanotechnol; 2021 Aug; 21(8):4406-4411. PubMed ID: 33714335 [TBL] [Abstract][Full Text] [Related]
11. In situ Functionalized Mesoporous Silicas for Sustainable Remediation Strategies in Removal of Inorganic Pollutants from Contaminated Environmental Water. Kobylinska NG; Kessler VG; Seisenbaeva GA; Dudarko OA ACS Omega; 2022 Jul; 7(27):23576-23590. PubMed ID: 35847252 [TBL] [Abstract][Full Text] [Related]
12. Immobilization of iron tetrasulfophthalocyanine on functionalized MCM-48 and MCM-41 mesoporous silicas: catalysts for oxidation of styrene. Pirouzmand M; Amini MM; Safari N J Colloid Interface Sci; 2008 Mar; 319(1):199-205. PubMed ID: 18067913 [TBL] [Abstract][Full Text] [Related]
13. Adsorption and release of ampicillin antibiotic from ordered mesoporous silica. Nairi V; Medda L; Monduzzi M; Salis A J Colloid Interface Sci; 2017 Jul; 497():217-225. PubMed ID: 28285049 [TBL] [Abstract][Full Text] [Related]
14. Triazole/Triazine-Functionalized Mesoporous Silica As a Hybrid Material Support for Palladium Nanocatalyst. Saad A; Vard C; Abderrabba M; Chehimi MM Langmuir; 2017 Jul; 33(28):7137-7146. PubMed ID: 28635285 [TBL] [Abstract][Full Text] [Related]
15. Hemilabile Amine-Functionalized Efficient Azo-Aromatic Cu-Catalysts Inspired by Galactose Oxidase: Impact of Amine Sidearm on Catalytic Aerobic Oxidation of Alcohols. Khatua M; Goswami B; Hans S; Kamal ; Mazumder S; Samanta S Inorg Chem; 2022 Nov; 61(44):17777-17789. PubMed ID: 36278950 [TBL] [Abstract][Full Text] [Related]
16. In situ synthesis of CuO nanoparticles over functionalized mesoporous silica and their application in catalytic syntheses of symmetrical diselenides. Das T; Chatterjee R; Majee A; Uyama H; Morgan D; Nandi M Dalton Trans; 2019 Dec; 48(48):17874-17886. PubMed ID: 31778131 [TBL] [Abstract][Full Text] [Related]
17. 2-Mercaptothiazoline modified mesoporous silica for mercury removal from aqueous media. Pérez-Quintanilla D; del Hierro I; Fajardo M; Sierra I J Hazard Mater; 2006 Jun; 134(1-3):245-56. PubMed ID: 16326000 [TBL] [Abstract][Full Text] [Related]
18. A generalized method toward high dispersion of transition metals in large pore mesoporous metal oxide/silica hybrids. Bérubé F; Khadraoui A; Florek J; Kaliaguine S; Kleitz F J Colloid Interface Sci; 2015 Jul; 449():102-14. PubMed ID: 25591825 [TBL] [Abstract][Full Text] [Related]
19. Solvent-free benzylic oxidation of aromatics over Cu(II)-containing propylsalicylaldimine anchored on the surface of mesoporous silica catalysts. Selvaraj M; Assiri MA; Rokhum SL; Manjunatha C; Appaturi JN; Murugesan S; Bhaumik A; Subrahmanyam C Dalton Trans; 2021 Nov; 50(42):15118-15128. PubMed ID: 34612261 [TBL] [Abstract][Full Text] [Related]
20. The big effect of a small change: formation of CuO nanoparticles instead of covalently bound Cu(ii) over functionalized mesoporous silica and its impact on catalytic efficiency. Das T; Singha D; Nandi M Dalton Trans; 2020 Aug; 49(29):10138-10155. PubMed ID: 32662469 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]