These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37368803)

  • 1. DeepTPpred: A Deep Learning Approach With Matrix Factorization for Predicting Therapeutic Peptides by Integrating Length Information.
    Cui Z; Wang SG; He Y; Chen ZH; Zhang QH
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4611-4622. PubMed ID: 37368803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides.
    Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A
    Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PTPD: predicting therapeutic peptides by deep learning and word2vec.
    Wu C; Gao R; Zhang Y; De Marinis Y
    BMC Bioinformatics; 2019 Sep; 20(1):456. PubMed ID: 31492094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepAVP: A Dual-Channel Deep Neural Network for Identifying Variable-Length Antiviral Peptides.
    Li J; Pu Y; Tang J; Zou Q; Guo F
    IEEE J Biomed Health Inform; 2020 Oct; 24(10):3012-3019. PubMed ID: 32142462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating the Discovery of Anticancer Peptides through Deep Forest Architecture with Deep Graphical Representation.
    Yao L; Li W; Zhang Y; Deng J; Pang Y; Huang Y; Chung CR; Yu J; Chiang YC; Lee TY
    Int J Mol Sci; 2023 Feb; 24(5):. PubMed ID: 36901759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DRaW: prediction of COVID-19 antivirals by deep learning-an objection on using matrix factorization.
    Hashemi SM; Zabihian A; Hooshmand M; Gharaghani S
    BMC Bioinformatics; 2023 Feb; 24(1):52. PubMed ID: 36793010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation.
    Yi HC; You ZH; Zhou X; Cheng L; Li X; Jiang TH; Chen ZH
    Mol Ther Nucleic Acids; 2019 Sep; 17():1-9. PubMed ID: 31173946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding.
    Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning.
    Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J
    Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-cancer Peptide Recognition Based on Grouped Sequence and Spatial Dimension Integrated Networks.
    You H; Yu L; Tian S; Ma X; Xing Y; Song J; Wu W
    Interdiscip Sci; 2022 Mar; 14(1):196-208. PubMed ID: 34637113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MDeePred: novel multi-channel protein featurization for deep learning-based binding affinity prediction in drug discovery.
    Rifaioglu AS; Cetin Atalay R; Cansen Kahraman D; Doğan T; Martin M; Atalay V
    Bioinformatics; 2021 May; 37(5):693-704. PubMed ID: 33067636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FASTNN: A Deep Learning Approach for Traffic Flow Prediction Considering Spatiotemporal Features.
    Zhou Q; Chen N; Lin S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepNetBim: deep learning model for predicting HLA-epitope interactions based on network analysis by harnessing binding and immunogenicity information.
    Yang X; Zhao L; Wei F; Li J
    BMC Bioinformatics; 2021 May; 22(1):231. PubMed ID: 33952199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ITP-Pred: an interpretable method for predicting, therapeutic peptides with fused features low-dimension representation.
    Cai L; Wang L; Fu X; Xia C; Zeng X; Zou Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33313672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticancer peptides prediction with deep representation learning features.
    Lv Z; Cui F; Zou Q; Zhang L; Xu L
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33529337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions.
    Song T; Zhang X; Ding M; Rodriguez-Paton A; Wang S; Wang G
    Methods; 2022 Aug; 204():269-277. PubMed ID: 35219861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepHE: Accurately predicting human essential genes based on deep learning.
    Zhang X; Xiao W; Xiao W
    PLoS Comput Biol; 2020 Sep; 16(9):e1008229. PubMed ID: 32936825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.