These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37368803)

  • 21. Signal-3L 3.0: Improving Signal Peptide Prediction through Combining Attention Deep Learning with Window-Based Scoring.
    Zhang WX; Pan X; Shen HB
    J Chem Inf Model; 2020 Jul; 60(7):3679-3686. PubMed ID: 32501689
    [TBL] [Abstract][Full Text] [Related]  

  • 22. How much can deep learning improve prediction of the responses to drugs in cancer cell lines?
    Chen Y; Zhang L
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34529029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptide-Major Histocompatibility Complex Class I Binding Prediction Based on Deep Learning With Novel Feature.
    Zhao T; Cheng L; Zang T; Hu Y
    Front Genet; 2019; 10():1191. PubMed ID: 31850062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Do deep learning models make a difference in the identification of antimicrobial peptides?
    García-Jacas CR; Pinacho-Castellanos SA; García-González LA; Brizuela CA
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380616
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model.
    Wang H; Zhao J; Zhao H; Li H; Wang J
    BMC Bioinformatics; 2021 Oct; 22(1):512. PubMed ID: 34670488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An attention-based hybrid deep learning framework integrating brain connectivity and activity of resting-state functional MRI data.
    Zhao M; Yan W; Luo N; Zhi D; Fu Z; Du Y; Yu S; Jiang T; Calhoun VD; Sui J
    Med Image Anal; 2022 May; 78():102413. PubMed ID: 35305447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction.
    Guo Y; Li W; Wang B; Liu H; Zhou D
    BMC Bioinformatics; 2019 Jun; 20(1):341. PubMed ID: 31208331
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep learning-based multi-functional therapeutic peptides prediction with a multi-label focal dice loss function.
    Fan H; Yan W; Wang L; Liu J; Bin Y; Xia J
    Bioinformatics; 2023 Jun; 39(6):. PubMed ID: 37216900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identifying multi-functional bioactive peptide functions using multi-label deep learning.
    Tang W; Dai R; Yan W; Zhang W; Bin Y; Xia E; Xia J
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34651655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity.
    Du Z; Ding X; Xu Y; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020337
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferring the Disease-Associated miRNAs Based on Network Representation Learning and Convolutional Neural Networks.
    Xuan P; Sun H; Wang X; Zhang T; Pan S
    Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31349729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of transport proteins from sequence information with the deep learning approach.
    Wang Q; Xu T; Xu K; Lu Z; Ying J
    Comput Biol Med; 2023 Jun; 160():106974. PubMed ID: 37167658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In Silico Screening and Optimization of Cell-Penetrating Peptides Using Deep Learning Methods.
    Park H; Park JH; Kim MS; Cho K; Shin JM
    Biomolecules; 2023 Mar; 13(3):. PubMed ID: 36979457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Logistic matrix factorisation and generative adversarial neural network-based method for predicting drug-target interactions.
    Abbou SI; Bouziane H; Chouarfia A
    Mol Divers; 2021 Aug; 25(3):1497-1516. PubMed ID: 34297278
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec.
    Sharma R; Shrivastava S; Kumar Singh S; Kumar A; Saxena S; Kumar Singh R
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33784381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides.
    Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q
    Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning.
    Salem M; Keshavarzi Arshadi A; Yuan JS
    BMC Bioinformatics; 2022 Sep; 23(1):389. PubMed ID: 36163001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patient Representation Learning From Heterogeneous Data Sources and Knowledge Graphs Using Deep Collective Matrix Factorization: Evaluation Study.
    Kumar S; Nanelia A; Mariappan R; Rajagopal A; Rajan V
    JMIR Med Inform; 2022 Jan; 10(1):e28842. PubMed ID: 35049514
    [TBL] [Abstract][Full Text] [Related]  

  • 39. miTAR: a hybrid deep learning-based approach for predicting miRNA targets.
    Gu T; Zhao X; Barbazuk WB; Lee JH
    BMC Bioinformatics; 2021 Feb; 22(1):96. PubMed ID: 33639834
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimicrobial peptide identification using multi-scale convolutional network.
    Su X; Xu J; Yin Y; Quan X; Zhang H
    BMC Bioinformatics; 2019 Dec; 20(1):730. PubMed ID: 31870282
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.