BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 37368988)

  • 1. Multiplex Single-Nucleotide Microbial Genome Editing Achieved by CRISPR-Cas9 Using 5'-End-Truncated sgRNAs.
    Lim SR; Lee HJ; Kim HJ; Lee SJ
    ACS Synth Biol; 2023 Jul; 12(7):2203-2207. PubMed ID: 37368988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mismatch Intolerance of 5'-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing.
    Lee HJ; Kim HJ; Lee SJ
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Miniature CRISPR-Cas12f1-Mediated Single-Nucleotide Microbial Genome Editing Using 3'-Truncated sgRNA.
    Lee HJ; Kim HJ; Lee SJ
    CRISPR J; 2023 Feb; 6(1):52-61. PubMed ID: 36576897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs.
    Lee HJ; Kim HJ; Lee SJ
    Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Single-Nucleotide Microbial Genome Editing Achieved Using CRISPR/Cpf1 with Maximally 3'-End-Truncated crRNAs.
    Lee HJ; Kim HJ; Park YJ; Lee SJ
    ACS Synth Biol; 2022 Jun; 11(6):2134-2143. PubMed ID: 35584409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-Nucleotide Microbial Genome Editing Using CRISPR-Cas12a.
    Lee HJ; Lee SJ
    Methods Mol Biol; 2024; 2760():147-155. PubMed ID: 38468087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Transcript CRISPR-Cas9 System for Multiplex Genome Editing in Plants.
    Tang X; Zhong Z; Ren Q; Liu B; Zhang Y
    Methods Mol Biol; 2019; 1917():75-82. PubMed ID: 30610629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality.
    Zhou S; Kalds P; Luo Q; Sun K; Zhao X; Gao Y; Cai B; Huang S; Kou Q; Petersen B; Chen Y; Ma B; Wang X
    BMC Genomics; 2022 May; 23(1):348. PubMed ID: 35524183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tetrazine-Ligated CRISPR sgRNAs for Efficient Genome Editing.
    Chen Z; Devi G; Arif A; Zamore PD; Sontheimer EJ; Watts JK
    ACS Chem Biol; 2022 May; 17(5):1045-1050. PubMed ID: 35446558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standardized Iterative Genome Editing Method for
    Fang H; Zhao J; Zhao X; Dong N; Zhao Y; Zhang D
    ACS Synth Biol; 2024 Feb; 13(2):613-623. PubMed ID: 38243901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptation of high-efficiency CRISPR/Cas9-based multiplex genome editing system in white lupin by using endogenous promoters.
    Zhu X; Xu W; Liu B; Zhan Y; Xia T
    Physiol Plant; 2023; 175(4):e13976. PubMed ID: 37616014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Assisted Multiplex Genome Editing Technique in Escherichia coli.
    Feng X; Zhao D; Zhang X; Ding X; Bi C
    Biotechnol J; 2018 Sep; 13(9):e1700604. PubMed ID: 29790644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disrupting Protein Expression with Double-Clicked sgRNA-Cas9 Complexes: A Modular Approach to CRISPR Gene Editing.
    Tijaro-Bulla S; Osman EA; St Laurent CD; McCord KA; Macauley MS; Gibbs JM
    ACS Chem Biol; 2023 Oct; 18(10):2156-2162. PubMed ID: 37556411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unpredicted central inversion in a sgRNA flanked by inverted repeats.
    Wang G; Sukumar S
    Mol Biol Rep; 2020 Aug; 47(8):6375-6378. PubMed ID: 32424520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small molecule regulated sgRNAs enable control of genome editing in E. coli by Cas9.
    Iwasaki RS; Ozdilek BA; Garst AD; Choudhury A; Batey RT
    Nat Commun; 2020 Mar; 11(1):1394. PubMed ID: 32170140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deaminase-mediated multiplex genome editing in Escherichia coli.
    Banno S; Nishida K; Arazoe T; Mitsunobu H; Kondo A
    Nat Microbiol; 2018 Apr; 3(4):423-429. PubMed ID: 29403014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Usefulness of current sgRNA design guidelines and in vitro cleavage assays for plant CRISPR/Cas genome editing: a case targeting the polyphenol oxidase gene family in eggplant (Solanum melongena L.).
    Sagarbarria MGS; Caraan JAM; Layos AJG
    Transgenic Res; 2023 Dec; 32(6):561-573. PubMed ID: 37874448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step knock-in of two antimicrobial peptide transgenes at multiple loci of catfish by CRISPR/Cas9-mediated multiplex genome engineering.
    Wang J; Torres IM; Shang M; Al-Armanazi J; Dilawar H; Hettiarachchi DU; Paladines-Parrales A; Chambers B; Pottle K; Soman M; Su B; Dunham RA
    Int J Biol Macromol; 2024 Mar; 260(Pt 1):129384. PubMed ID: 38224812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Cas9 Toolkit for Genome Editing in an Autotrophic CO
    Li J; Zhang L; Xu Q; Zhang W; Li Z; Chen L; Dong X
    Microbiol Spectr; 2022 Aug; 10(4):e0116522. PubMed ID: 35766512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.