These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37369039)

  • 1. Synthetic NAD(P)(H) Cycle for ATP Regeneration.
    Willett E; Banta S
    ACS Synth Biol; 2023 Jul; 12(7):2118-2126. PubMed ID: 37369039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emissive Synthetic Cofactors: Enzymatic Interconversions of
    Hallé F; Fin A; Rovira AR; Tor Y
    Angew Chem Int Ed Engl; 2018 Jan; 57(4):1087-1090. PubMed ID: 29228460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetically encoded ATP and NAD(P)H biosensors: potential tools in metabolic engineering.
    Wang S; Jiang W; Jin X; Qi Q; Liang Q
    Crit Rev Biotechnol; 2023 Dec; 43(8):1211-1225. PubMed ID: 36130803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-Up Construction of a Minimal System for Cellular Respiration and Energy Regeneration.
    Biner O; Fedor JG; Yin Z; Hirst J
    ACS Synth Biol; 2020 Jun; 9(6):1450-1459. PubMed ID: 32383867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae.
    Shi F; Kawai S; Mori S; Kono E; Murata K
    FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyridine nucleotide transhydrogenase from Azotobacter vinelandii.
    Chung AE
    J Bacteriol; 1970 May; 102(2):438-47. PubMed ID: 4392895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of pyridine nucleotide redox status during oxidative challenge at normal and low-glucose states: implications for cellular adenosine triphosphate, mitochondrial respiratory activity, and reducing capacity in colon epithelial cells.
    Circu ML; Maloney RE; Aw TY
    Antioxid Redox Signal; 2011 Jun; 14(11):2151-62. PubMed ID: 21083422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic regeneration and conservation of ATP: challenges and opportunities.
    Chen H; Zhang YPJ
    Crit Rev Biotechnol; 2021 Feb; 41(1):16-33. PubMed ID: 33012193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycolytic pathway, redox state of NAD(P)-couples and energy metabolism in lens in galactose-fed rats: effect of an aldose reductase inhibitor.
    Obrosova I; Faller A; Burgan J; Ostrow E; Williamson JR
    Curr Eye Res; 1997 Jan; 16(1):34-43. PubMed ID: 9043821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved strategies for electrochemical 1,4-NAD(P)H
    Morrison CS; Armiger WB; Dodds DR; Dordick JS; Koffas MAG
    Biotechnol Adv; 2018; 36(1):120-131. PubMed ID: 29030132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of dietary taurine supplementation on GSH and NAD(P)-redox status, lipid peroxidation, and energy metabolism in diabetic precataractous lens.
    Obrosova IG; Stevens MJ
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):680-8. PubMed ID: 10067971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation and the reduced nicotinamide adenine dinucleotide oxidase reaction in Streptococcus agalactiae.
    Mickelson MN
    J Bacteriol; 1969 Nov; 100(2):895-901. PubMed ID: 4311195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electro-enzymatic ATP regeneration coupled to biocatalytic phosphorylation reactions.
    García-Molina G; Natale P; Coito AM; Cava DG; A C Pereira I; López-Montero I; Vélez M; Pita M; De Lacey AL
    Bioelectrochemistry; 2023 Aug; 152():108432. PubMed ID: 37030092
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Organelles for Energy Regeneration.
    Otrin L; Kleineberg C; Caire da Silva L; Landfester K; Ivanov I; Wang M; Bednarz C; Sundmacher K; Vidaković-Koch T
    Adv Biosyst; 2019 Jun; 3(6):e1800323. PubMed ID: 32648709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alterations in nicotinamide and adenine nucleotide systems during mixed-function oxidation of p-nitroanisole in perfused livers from normal and phenobarbital-treated rats.
    Kauffman FC; Evans RK; Thurman RG
    Biochem J; 1977 Sep; 166(3):583-92. PubMed ID: 23104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy-linked mitochondrial pyridine nucleotide transhydrogenase of adult Hymenolepis diminuta.
    Fioravanti CF; McKelvey JR; Reisig JM
    J Parasitol; 1992 Oct; 78(5):774-8. PubMed ID: 1403417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-linked mitochondrial transhydrogenation from NADPH to NADP analogs.
    Phelps DC; Galante YM; Hatefi Y
    J Biol Chem; 1980 Oct; 255(20):9647-52. PubMed ID: 7430092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of an NAD kinase from Archaeoglobus fulgidus in complex with ATP, NAD, or NADP.
    Liu J; Lou Y; Yokota H; Adams PD; Kim R; Kim SH
    J Mol Biol; 2005 Nov; 354(2):289-303. PubMed ID: 16242716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial malate dehydrogenase, decarboxylating ("malic" enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda).
    Fioravanti CF
    J Parasitol; 1982 Apr; 68(2):213-20. PubMed ID: 7077455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria.
    Sazanov LA; Jackson JB
    FEBS Lett; 1994 May; 344(2-3):109-16. PubMed ID: 8187868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.