These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 37369039)

  • 21. Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production.
    Liu F; Banta S; Chen W
    Chem Commun (Camb); 2013 May; 49(36):3766-8. PubMed ID: 23535691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Steady-state kinetics of formaldehyde dehydrogenase and formate dehydrogenase from a methanol-utilizing yeast, Candida boidinii.
    Kato N; Sahm H; Wagner F
    Biochim Biophys Acta; 1979 Jan; 566(1):12-20. PubMed ID: 215230
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methanol fermentation increases the production of NAD(P)H-dependent chemicals in synthetic methylotrophic
    Wang X; Wang X; Lu X; Ma C; Chen K; Ouyang P
    Biotechnol Biofuels; 2019; 12():17. PubMed ID: 30679956
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Reprinted from Biotechnology and Bioengineering, Vol. XXIII, No. 12, Pages 2789-2802 (1981).
    Wichmann R; Wandrey C; Bückmann AF; Kula MR
    Biotechnol Bioeng; 2000 Mar; 67(6):791-804. PubMed ID: 10699858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dehydrogenase-Catalyzed Oxidation of Furanics: Exploitation of Hemoglobin Catalytic Promiscuity.
    Jia HY; Zong MH; Yu HL; Li N
    ChemSusChem; 2017 Sep; 10(18):3524-3528. PubMed ID: 28786206
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Supported Pt Enabled Proton-Driven NAD(P)
    Burnett JWH; Chen H; Li J; Li Y; Huang S; Shi J; McCue AJ; Howe RF; Minteer SD; Wang X
    ACS Appl Mater Interfaces; 2022 May; 14(18):20943-20952. PubMed ID: 35482431
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states.
    Jong YS; Davis EJ
    Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrocatalytic CO2 fixation by regenerating reduced cofactor NADH during Calvin Cycle using glassy carbon electrode.
    Ali I; Amiri S; Ullah N; Younas M; Rezakazemi M
    PLoS One; 2020; 15(9):e0239340. PubMed ID: 32941542
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of electrode potential, pH and NAD
    Aamer E; Thöming J; Baune M; Reimer N; Dringen R; Romero M; Bösing I
    Sci Rep; 2022 Sep; 12(1):16380. PubMed ID: 36180530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro ATP regeneration from polyphosphate and AMP by polyphosphate:AMP phosphotransferase and adenylate kinase from Acinetobacter johnsonii 210A.
    Resnick SM; Zehnder AJ
    Appl Environ Microbiol; 2000 May; 66(5):2045-51. PubMed ID: 10788379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of ATP-NADH kinase isozymes and their contribution to supply of NADP(H) in Saccharomyces cerevisiae.
    Shi F; Kawai S; Mori S; Kono E; Murata K
    FEBS J; 2005 Jul; 272(13):3337-49. PubMed ID: 15978040
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria.
    Sazanov LA; Jackson JB
    FEBS Lett; 1994 May; 344(2-3):109-16. PubMed ID: 8187868
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A pH-controlled fed-batch process can overcome inhibition by formate in NADH-dependent enzymatic reductions using formate dehydrogenase-catalyzed coenzyme regeneration.
    Neuhauser W; Steininger M; Haltrich D; Kulbe KD; Nidetzky B
    Biotechnol Bioeng; 1998 Nov; 60(3):277-82. PubMed ID: 10099429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel whole-cell biocatalyst with NAD+ regeneration for production of chiral chemicals.
    Xiao Z; Lv C; Gao C; Qin J; Ma C; Liu Z; Liu P; Li L; Xu P
    PLoS One; 2010 Jan; 5(1):e8860. PubMed ID: 20126645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of cell survival and death by pyridine nucleotides.
    Oka S; Hsu CP; Sadoshima J
    Circ Res; 2012 Aug; 111(5):611-27. PubMed ID: 22904041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient whole-cell biocatalyst for acetoin production with NAD+ regeneration system through homologous co-expression of 2,3-butanediol dehydrogenase and NADH oxidase in engineered Bacillus subtilis.
    Bao T; Zhang X; Rao Z; Zhao X; Zhang R; Yang T; Xu Z; Yang S
    PLoS One; 2014; 9(7):e102951. PubMed ID: 25036158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A two-step synthesis of new water-soluble polymers of NAD+ and ADP. The biological properties of these polymers.
    Le Goffic F; Sicsic S; Vincent C
    Eur J Biochem; 1980; 108(1):143-8. PubMed ID: 6250824
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application.
    Sellés Vidal L; Kelly CL; Mordaka PM; Heap JT
    Biochim Biophys Acta Proteins Proteom; 2018 Feb; 1866(2):327-347. PubMed ID: 29129662
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Citrate as Cost-Efficient NADPH Regenerating Agent.
    Oeggl R; Neumann T; Gätgens J; Romano D; Noack S; Rother D
    Front Bioeng Biotechnol; 2018; 6():196. PubMed ID: 30631764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enzymatic Production of Glutathione Coupling with an ATP Regeneration System Based on Polyphosphate Kinase.
    Cao H; Li C; Zhao J; Wang F; Tan T; Liu L
    Appl Biochem Biotechnol; 2018 Jun; 185(2):385-395. PubMed ID: 29164506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.