BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 37369494)

  • 1. FGF10/FGFR2 Signaling: Therapeutically Targetable Vulnerability in Ligand-responsive Cholangiocarcinoma Cells.
    Oeurn K; Jusakul A; Jaidee R; Kukongviriyapan V; Senggunprai L; Prawan A; Kongpetch S
    In Vivo; 2023; 37(4):1628-1637. PubMed ID: 37369494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of FGFR2 enhances chemosensitivity to gemcitabine in cholangiocarcinoma through the AKT/mTOR and EMT signaling pathways.
    Jaidee R; Kukongviriyapan V; Senggunprai L; Prawan A; Jusakul A; Laphanuwat P; Kongpetch S
    Life Sci; 2022 May; 296():120427. PubMed ID: 35218764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy.
    Yothaisong S; Dokduang H; Techasen A; Namwat N; Yongvanit P; Bhudhisawasdi V; Puapairoj A; Riggins GJ; Loilome W
    Tumour Biol; 2013 Dec; 34(6):3637-48. PubMed ID: 23832540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of FGFR Inhibitors and Combination Therapies for Acquired Resistance in FGFR2-Fusion Cholangiocarcinoma.
    Krook MA; Lenyo A; Wilberding M; Barker H; Dantuono M; Bailey KM; Chen HZ; Reeser JW; Wing MR; Miya J; Samorodnitsky E; Smith AM; Dao T; Martin DM; Ciombor KK; Hays J; Freud AG; Roychowdhury S
    Mol Cancer Ther; 2020 Mar; 19(3):847-857. PubMed ID: 31911531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EGFR Inhibition Potentiates FGFR Inhibitor Therapy and Overcomes Resistance in FGFR2 Fusion-Positive Cholangiocarcinoma.
    Wu Q; Zhen Y; Shi L; Vu P; Greninger P; Adil R; Merritt J; Egan R; Wu MJ; Yin X; Ferrone CR; Deshpande V; Baiev I; Pinto CJ; McLoughlin DE; Walmsley CS; Stone JR; Gordan JD; Zhu AX; Juric D; Goyal L; Benes CH; Bardeesy N
    Cancer Discov; 2022 May; 12(5):1378-1395. PubMed ID: 35420673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Convergent MAPK pathway alterations mediate acquired resistance to FGFR inhibitors in FGFR2 fusion-positive cholangiocarcinoma.
    DiPeri TP; Zhao M; Evans KW; Varadarajan K; Moss T; Scott S; Kahle MP; Byrnes CC; Chen H; Lee SS; Halim AB; Hirai H; Wacheck V; Kwong LN; Rodon J; Javle M; Meric-Bernstam F
    J Hepatol; 2024 Feb; 80(2):322-334. PubMed ID: 37972659
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antitumor Activity of Tasurgratinib as an Orally Available FGFR1-3 Inhibitor in Cholangiocarcinoma Models With FGFR2-fusion.
    Kawano S; Kawada MI; Fukushima S; Arai Y; Shibata T; Miyano SW
    Anticancer Res; 2024 Jun; 44(6):2393-2406. PubMed ID: 38821585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination therapies for targeting FGFR2 fusions in cholangiocarcinoma.
    Saborowski A; Vogel A; Segatto O
    Trends Cancer; 2022 Feb; 8(2):83-86. PubMed ID: 34840108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Typing FGFR2 translocation determines the response to targeted therapy of intrahepatic cholangiocarcinomas.
    Pu X; Ye Q; Cai J; Yang X; Fu Y; Fan X; Wu H; Chen J; Qiu Y; Yue S
    Cell Death Dis; 2021 Mar; 12(3):256. PubMed ID: 33692336
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Angerilli V; Fornaro L; Pepe F; Rossi SM; Perrone G; Malapelle U; Fassan M
    Pathologica; 2023 Apr; 115(2):71-82. PubMed ID: 37017301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apatinib affect VEGF-mediated cell proliferation, migration, invasion via blocking VEGFR2/RAF/MEK/ERK and PI3K/AKT pathways in cholangiocarcinoma cell.
    Huang M; Huang B; Li G; Zeng S
    BMC Gastroenterol; 2018 Nov; 18(1):169. PubMed ID: 30400838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated genomic characterization reveals novel, therapeutically relevant drug targets in FGFR and EGFR pathways in sporadic intrahepatic cholangiocarcinoma.
    Borad MJ; Champion MD; Egan JB; Liang WS; Fonseca R; Bryce AH; McCullough AE; Barrett MT; Hunt K; Patel MD; Young SW; Collins JM; Silva AC; Condjella RM; Block M; McWilliams RR; Lazaridis KN; Klee EW; Bible KC; Harris P; Oliver GR; Bhavsar JD; Nair AA; Middha S; Asmann Y; Kocher JP; Schahl K; Kipp BR; Barr Fritcher EG; Baker A; Aldrich J; Kurdoglu A; Izatt T; Christoforides A; Cherni I; Nasser S; Reiman R; Phillips L; McDonald J; Adkins J; Mastrian SD; Placek P; Watanabe AT; Lobello J; Han H; Von Hoff D; Craig DW; Stewart AK; Carpten JD
    PLoS Genet; 2014 Feb; 10(2):e1004135. PubMed ID: 24550739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Co-mutational Spectrum Determines the Therapeutic Response in Murine FGFR2 Fusion-Driven Cholangiocarcinoma.
    Kendre G; Marhenke S; Lorz G; Becker D; Reineke-Plaaß T; Poth T; Murugesan K; Kühnel F; Woller N; Wirtz RM; Pich A; Marquardt JU; Saborowski M; Vogel A; Saborowski A
    Hepatology; 2021 Sep; 74(3):1357-1370. PubMed ID: 33709535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined targeting of AKT and mTOR using MK-2206 and RAD001 is synergistic in the treatment of cholangiocarcinoma.
    Ewald F; Grabinski N; Grottke A; Windhorst S; Nörz D; Carstensen L; Staufer K; Hofmann BT; Diehl F; David K; Schumacher U; Nashan B; Jücker M
    Int J Cancer; 2013 Nov; 133(9):2065-76. PubMed ID: 23588885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landscape of Clinical Resistance Mechanisms to FGFR Inhibitors in FGFR2-Altered Cholangiocarcinoma.
    Wu Q; Ellis H; Siravegna G; Michel AG; Norden BL; Fece de la Cruz F; Balasooriya ER; Zhen Y; Silveira VS; Che J; Corcoran RB; Bardeesy N
    Clin Cancer Res; 2024 Jan; 30(1):198-208. PubMed ID: 37843855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Ponatinib inhibits growth of patient-derived xenograft of cholangiocarcinoma expressing FGFR2-CCDC6 fusion protein in nude mice].
    Wu T; Jiang X; Xu B; Wang Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Oct; 40(10):1448-1456. PubMed ID: 33118510
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Cleary JM; Raghavan S; Wu Q; Li YY; Spurr LF; Gupta HV; Rubinson DA; Fetter IJ; Hornick JL; Nowak JA; Siravegna G; Goyal L; Shi L; Brais LK; Loftus M; Shinagare AB; Abrams TA; Clancy TE; Wang J; Patel AK; Brichory F; Vaslin Chessex A; Sullivan RJ; Keller RB; Denning S; Hill ER; Shapiro GI; Pokorska-Bocci A; Zanna C; Ng K; Schrag D; Jänne PA; Hahn WC; Cherniack AD; Corcoran RB; Meyerson M; Daina A; Zoete V; Bardeesy N; Wolpin BM
    Cancer Discov; 2021 Oct; 11(10):2488-2505. PubMed ID: 33926920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of FGF10-ERK signal activation suppresses intraductal papillary neoplasm of the bile duct and its associated carcinomas.
    Tomita H; Tanaka K; Hirata A; Okada H; Imai H; Shirakami Y; Ohnishi K; Sugie S; Aoki H; Hatano Y; Noguchi K; Kanayama T; Niwa A; Suzui N; Miyazaki T; Tanaka T; Akiyama H; Shimizu M; Yoshida K; Hara A
    Cell Rep; 2021 Feb; 34(8):108772. PubMed ID: 33626352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High expression of ErbB2 contributes to cholangiocarcinoma cell invasion and proliferation through AKT/p70S6K.
    Treekitkarnmongkol W; Suthiphongchai T
    World J Gastroenterol; 2010 Aug; 16(32):4047-54. PubMed ID: 20731018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Derrischalcone suppresses cholangiocarcinoma cells through targeting ROS-mediated mitochondrial cell death, Akt/mTOR, and FAK pathways.
    Wandee J; Srinontong P; Prawan A; Senggunprai L; Kongpetch S; Yenjai C; Kukongviriyapan V
    Naunyn Schmiedebergs Arch Pharmacol; 2021 Sep; 394(9):1929-1940. PubMed ID: 34086099
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.