BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 37369638)

  • 1. iAMPCN: a deep-learning approach for identifying antimicrobial peptides and their functional activities.
    Xu J; Li F; Li C; Guo X; Landersdorfer C; Shen HH; Peleg AY; Li J; Imoto S; Yao J; Akutsu T; Song J
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37369638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do deep learning models make a difference in the identification of antimicrobial peptides?
    García-Jacas CR; Pinacho-Castellanos SA; García-González LA; Brizuela CA
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35380616
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fuse feeds as one: cross-modal framework for general identification of AMPs.
    Zhang W; Xu Y; Wang A; Chen G; Zhao J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37779248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and Identification of Natural Antimicrobial Peptides on Different Organisms.
    Chung CR; Jhong JH; Wang Z; Chen S; Wan Y; Horng JT; Lee TY
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32024233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMP-BERT: Prediction of antimicrobial peptide function based on a BERT model.
    Lee H; Lee S; Lee I; Nam H
    Protein Sci; 2023 Jan; 32(1):e4529. PubMed ID: 36461699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on antimicrobial peptides databases and the computational tools.
    Ramazi S; Mohammadi N; Allahverdi A; Khalili E; Abdolmaleki P
    Database (Oxford); 2022 Mar; 2022():. PubMed ID: 35305010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPFinder: A computational model to identify antimicrobial peptides and their functions based on sequence-derived information.
    Yang S; Yang Z; Ni X
    Anal Biochem; 2023 Jul; 673():115196. PubMed ID: 37236434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A deep learning method for predicting the minimum inhibitory concentration of antimicrobial peptides against
    Yan J; Zhang B; Zhou M; Campbell-Valois FX; Siu SWI
    mSystems; 2023 Aug; 8(4):e0034523. PubMed ID: 37431995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PTPAMP: prediction tool for plant-derived antimicrobial peptides.
    Jaiswal M; Singh A; Kumar S
    Amino Acids; 2023 Jan; 55(1):1-17. PubMed ID: 35864258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing antimicrobial peptides using deep learning and molecular dynamic simulations.
    Cao Q; Ge C; Wang X; Harvey PJ; Zhang Z; Ma Y; Wang X; Jia X; Mobli M; Craik DJ; Jiang T; Yang J; Wei Z; Wang Y; Chang S; Yu R
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36857616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EnAMP: A novel deep learning ensemble antibacterial peptide recognition algorithm based on multi-features.
    Zhuang J; Gao W; Su R
    J Bioinform Comput Biol; 2024 Feb; 22(1):2450001. PubMed ID: 38406833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iAMP-CA2L: a new CNN-BiLSTM-SVM classifier based on cellular automata image for identifying antimicrobial peptides and their functional types.
    Xiao X; Shao YT; Cheng X; Stamatovic B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34086856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive assessment of machine learning-based methods for predicting antimicrobial peptides.
    Xu J; Li F; Leier A; Xiang D; Shen HH; Marquez Lago TT; Li J; Yu DJ; Song J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33774670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 'Targeting' the search: An upgraded structural and functional repository of antimicrobial peptides for biofilm studies (B-AMP v2.0) with a focus on biofilm protein targets.
    Ravichandran S; Avatapalli S; Narasimhan Y; Kaushik KS; Yennamalli RM
    Front Cell Infect Microbiol; 2022; 12():1020391. PubMed ID: 36329825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-AMPpred for in silico-aided predictions of antimicrobial peptides by integrating composition-based features.
    Singh O; Hsu WL; Su EC
    BMC Bioinformatics; 2021 Jul; 22(1):389. PubMed ID: 34330209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ensemble-AMPPred: Robust AMP Prediction and Recognition Using the Ensemble Learning Method with a New Hybrid Feature for Differentiating AMPs.
    Lertampaiporn S; Vorapreeda T; Hongsthong A; Thammarongtham C
    Genes (Basel); 2021 Jan; 12(2):. PubMed ID: 33494403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying anti-coronavirus peptides by incorporating different negative datasets and imbalanced learning strategies.
    Pang Y; Wang Z; Jhong JH; Lee TY
    Brief Bioinform; 2021 Mar; 22(2):1085-1095. PubMed ID: 33497434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial peptides recognition using weighted physicochemical property encoding.
    Na S; Wannigama DL; Saethang T
    J Bioinform Comput Biol; 2023 Apr; 21(2):2350006. PubMed ID: 37120707
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and identification of antimicrobial peptides with different functional activities.
    Chung CR; Kuo TR; Wu LC; Lee TY; Horng JT
    Brief Bioinform; 2019 Jun; ():. PubMed ID: 31155657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections.
    Zhu Y; Hao W; Wang X; Ouyang J; Deng X; Yu H; Wang Y
    Med Res Rev; 2022 Jul; 42(4):1377-1422. PubMed ID: 34984699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.