These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37369939)

  • 1. Noise estimation for head-mounted 3D binocular eye tracking using Pupil Core eye-tracking goggles.
    Velisar A; Shanidze NM
    Behav Res Methods; 2024 Jan; 56(1):53-79. PubMed ID: 37369939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gaze Tracking and Point Estimation Using Low-Cost Head-Mounted Devices.
    Lee KF; Chen YL; Yu CW; Chin KY; Wu CH
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32235523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaze-angle dependency of pupil-size measurements in head-mounted eye tracking.
    Petersch B; Dierkes K
    Behav Res Methods; 2022 Apr; 54(2):763-779. PubMed ID: 34347276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generating accurate 3D gaze vectors using synchronized eye tracking and motion capture.
    Stone SA; Boser QA; Dawson TR; Vette AH; Hebert JS; Pilarski PM; Chapman CS
    Behav Res Methods; 2024 Jan; 56(1):18-31. PubMed ID: 36085543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Accuracy 3D Gaze Estimation with Efficient Recalibration for Head-Mounted Gaze Tracking Systems.
    Xia Y; Liang J; Li Q; Xin P; Zhang N
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Gaze Estimation Using RGB-IR Cameras.
    Mokatren M; Kuflik T; Shimshoni I
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of slippage on the data quality of head-worn eye trackers.
    Niehorster DC; Santini T; Hessels RS; Hooge ITC; Kasneci E; Nyström M
    Behav Res Methods; 2020 Jun; 52(3):1140-1160. PubMed ID: 31898290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unity Human Eye Model for Gaze Tracking with a Query-Driven Dynamic Vision Sensor.
    Tang S; Wang K; Ogrey S; Villazon J; Khan S; Paul A; Ardolino N; Kubendran R; Cauwenberghs G
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2194-2198. PubMed ID: 36085625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel method for measuring gaze orientation in space in unrestrained head conditions.
    Cesqui B; de Langenberg Rv; Lacquaniti F; d'Avella A
    J Vis; 2013 Jul; 13(8):. PubMed ID: 23902754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Novel Method for Estimating Free Space 3D Point-of-Regard Using Pupillary Reflex and Line-of-Sight Convergence Points.
    Wan Z; Wang X; Zhou K; Chen X; Wang X
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30011960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive load in tele-robotic surgery: a comparison of eye tracker designs.
    Soberanis-Mukul RD; Puentes PR; Acar A; Gupta I; Bhowmick J; Li Y; Ghazi A; Wu JY; Unberath M
    Int J Comput Assist Radiol Surg; 2024 Jul; 19(7):1281-1284. PubMed ID: 38704792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pupil size dynamics during fixation impact the accuracy and precision of video-based gaze estimation.
    Choe KW; Blake R; Lee SH
    Vision Res; 2016 Jan; 118():48-59. PubMed ID: 25578924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new comprehensive eye-tracking test battery concurrently evaluating the Pupil Labs glasses and the EyeLink 1000.
    Ehinger BV; Groß K; Ibs I; König P
    PeerJ; 2019; 7():e7086. PubMed ID: 31328028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable Gaze Tracking with Filtering Based on Internet of Things.
    Xiao P; Wu J; Wang Y; Chi J; Wang Z
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Head-free, remote eye-gaze detection system based on pupil-corneal reflection method with easy calibration using two stereo-calibrated video cameras.
    Ebisawa Y; Fukumoto K
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2952-60. PubMed ID: 23751948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calibration-Free Mobile Eye-Tracking Using Corneal Imaging.
    Mokatren M; Kuflik T; Shimshoni I
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of handheld marker to calibrate a field-programmable gate array based eye tracker for artificial vision system.
    Caspi A; Roy A; Barry MP; Sadeghi R; Kartha A; Dagnelie G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3323-3326. PubMed ID: 33018715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaze tracking dataset for comparison of smooth and saccadic eye tracking.
    Pantanowitz A; Kim K; Chewins C; Rubin DM
    Data Brief; 2021 Feb; 34():106730. PubMed ID: 33511259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strategies for enhancing automatic fixation detection in head-mounted eye tracking.
    Drews M; Dierkes K
    Behav Res Methods; 2024 Sep; 56(6):6276-6298. PubMed ID: 38594440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gaze Point Tracking Based on a Robotic Body-Head-Eye Coordination Method.
    Feng X; Wang Q; Cong H; Zhang Y; Qiu M
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.