These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An efficient computer vision-based approach for acute lymphoblastic leukemia prediction. Almadhor A; Sattar U; Al Hejaili A; Ghulam Mohammad U; Tariq U; Ben Chikha H Front Comput Neurosci; 2022; 16():1083649. PubMed ID: 36507304 [TBL] [Abstract][Full Text] [Related]
3. Hybrid Techniques for the Diagnosis of Acute Lymphoblastic Leukemia Based on Fusion of CNN Features. Ahmed IA; Senan EM; Shatnawi HSA; Alkhraisha ZM; Al-Azzam MMA Diagnostics (Basel); 2023 Mar; 13(6):. PubMed ID: 36980334 [TBL] [Abstract][Full Text] [Related]
4. Hybrid Feature-Learning-Based PSO-PCA Feature Engineering Approach for Blood Cancer Classification. Atteia G; Alnashwan R; Hassan M Diagnostics (Basel); 2023 Aug; 13(16):. PubMed ID: 37627931 [TBL] [Abstract][Full Text] [Related]
5. LeuFeatx: Deep learning-based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear. Rastogi P; Khanna K; Singh V Comput Biol Med; 2022 Mar; 142():105236. PubMed ID: 35066445 [TBL] [Abstract][Full Text] [Related]
6. Mutual Information based hybrid model and deep learning for Acute Lymphocytic Leukemia detection in single cell blood smear images. Jha KK; Dutta HS Comput Methods Programs Biomed; 2019 Oct; 179():104987. PubMed ID: 31443862 [TBL] [Abstract][Full Text] [Related]
7. Leukemia classification using the deep learning method of CNN. Arivuselvam B; Sudha S J Xray Sci Technol; 2022; 30(3):567-585. PubMed ID: 35253723 [TBL] [Abstract][Full Text] [Related]
8. Classification of acute myeloid leukemia M1 and M2 subtypes using machine learning. Liu K; Hu J Comput Biol Med; 2022 Aug; 147():105741. PubMed ID: 35738057 [TBL] [Abstract][Full Text] [Related]
9. GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images. Das BK; Dutta HS Med Biol Eng Comput; 2020 Nov; 58(11):2789-2803. PubMed ID: 32929660 [TBL] [Abstract][Full Text] [Related]
10. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods. Taghizadeh E; Heydarheydari S; Saberi A; JafarpoorNesheli S; Rezaeijo SM BMC Bioinformatics; 2022 Oct; 23(1):410. PubMed ID: 36183055 [TBL] [Abstract][Full Text] [Related]
11. Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT Images: A Machine Learning Based Approach. Kassania SH; Kassanib PH; Wesolowskic MJ; Schneidera KA; Detersa R Biocybern Biomed Eng; 2021; 41(3):867-879. PubMed ID: 34108787 [TBL] [Abstract][Full Text] [Related]
12. Classification of Diabetic Foot Ulcers from Images Using Machine Learning Approach. Almufadi N; Alhasson HF Diagnostics (Basel); 2024 Aug; 14(16):. PubMed ID: 39202295 [TBL] [Abstract][Full Text] [Related]
13. Modeling of the Acute Lymphoblastic Leukemia Detection by Convolutional Neural Networks (CNNs). Albeeshi AA; Alshanbari HS Curr Med Imaging; 2023; 19(7):734-748. PubMed ID: 36239727 [TBL] [Abstract][Full Text] [Related]
14. Machine Learning Hybrid Model for the Prediction of Chronic Kidney Disease. Khalid H; Khan A; Zahid Khan M; Mehmood G; Shuaib Qureshi M Comput Intell Neurosci; 2023; 2023():9266889. PubMed ID: 36959840 [TBL] [Abstract][Full Text] [Related]
15. Cancerous and Non-Cancerous MRI Classification Using Dual DCNN Approach. Saeed Z; Bouhali O; Ji JX; Hammoud R; Al-Hammadi N; Aouadi S; Torfeh T Bioengineering (Basel); 2024 Apr; 11(5):. PubMed ID: 38790279 [TBL] [Abstract][Full Text] [Related]
16. Computer aid screening of COVID-19 using X-ray and CT scan images: An inner comparison. Sethy PK; Behera SK; Anitha K; Pandey C; Khan MR J Xray Sci Technol; 2021; 29(2):197-210. PubMed ID: 33492267 [TBL] [Abstract][Full Text] [Related]
17. Hybridizing Deep Neural Networks and Machine Learning Models for Aerial Satellite Forest Image Segmentation. Kwenda C; Gwetu M; Fonou-Dombeu JV J Imaging; 2024 May; 10(6):. PubMed ID: 38921609 [TBL] [Abstract][Full Text] [Related]
18. Phonocardiogram transfer learning-based CatBoost model for diastolic dysfunction identification using multiple domain-specific deep feature fusion. Zheng Y; Guo X; Yang Y; Wang H; Liao K; Qin J Comput Biol Med; 2023 Apr; 156():106707. PubMed ID: 36871337 [TBL] [Abstract][Full Text] [Related]
19. Comparison among Four Deep Learning Image Classification Algorithms in AI-based Diatom Test. Zhu YZ; Zhang J; Cheng Q; Yu HX; Deng KF; Zhang JH; Qin ZQ; Zhao J; Sun JH; Huang P Fa Yi Xue Za Zhi; 2022 Feb; 38(1):31-39. PubMed ID: 35725701 [TBL] [Abstract][Full Text] [Related]
20. Automated system for classification of COVID-19 infection from lung CT images based on machine learning and deep learning techniques. Guhan B; Almutairi L; Sowmiya S; Snekhalatha U; Rajalakshmi T; Aslam SM Sci Rep; 2022 Oct; 12(1):17417. PubMed ID: 36257964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]