BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 37371033)

  • 1. GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements.
    Zheng C; Weinstein LD; Nguyen KK; Grewal A; Gurevich EV; Gurevich VV
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GPCR binding and JNK3 activation by arrestin-3 have different structural requirements.
    Zheng C; Weinstein LD; Nguyen KK; Grewal A; Gurevich EV; Gurevich VV
    bioRxiv; 2023 May; ():. PubMed ID: 37205393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arrestin-dependent activation of JNK family kinases.
    Zhan X; Kook S; Gurevich EV; Gurevich VV
    Handb Exp Pharmacol; 2014; 219():259-80. PubMed ID: 24292834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. β-arrestins and G protein-coupled receptor trafficking.
    Tian X; Kang DS; Benovic JL
    Handb Exp Pharmacol; 2014; 219():173-86. PubMed ID: 24292830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of arrestin-3-specific residues necessary for JNK3 kinase activation.
    Seo J; Tsakem EL; Breitman M; Gurevich VV
    J Biol Chem; 2011 Aug; 286(32):27894-901. PubMed ID: 21715332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Receptor sequestration in response to β-arrestin-2 phosphorylation by ERK1/2 governs steady-state levels of GPCR cell-surface expression.
    Paradis JS; Ly S; Blondel-Tepaz É; Galan JA; Beautrait A; Scott MG; Enslen H; Marullo S; Roux PP; Bouvier M
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):E5160-8. PubMed ID: 26324936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors.
    Gimenez LE; Kook S; Vishnivetskiy SA; Ahmed MR; Gurevich EV; Gurevich VV
    J Biol Chem; 2012 Mar; 287(12):9028-40. PubMed ID: 22275358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short Arrestin-3-Derived Peptides Activate JNK3 in Cells.
    Perry-Hauser NA; Kaoud TS; Stoy H; Zhan X; Chen Q; Dalby KN; Iverson TM; Gurevich VV; Gurevich EV
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysine in the lariat loop of arrestins does not serve as phosphate sensor.
    Vishnivetskiy SA; Zheng C; May MB; Karnam PC; Gurevich EV; Gurevich VV
    J Neurochem; 2021 Feb; 156(4):435-444. PubMed ID: 32594524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Arrestin-1 Middle Loop in Rhodopsin Binding.
    Vishnivetskiy SA; Huh EK; Karnam PC; Oviedo S; Gurevich EV; Gurevich VV
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3.
    McDonald PH; Chow CW; Miller WE; Laporte SA; Field ME; Lin FT; Davis RJ; Lefkowitz RJ
    Science; 2000 Nov; 290(5496):1574-7. PubMed ID: 11090355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structural basis of the arrestin binding to GPCRs.
    Gurevich VV; Gurevich EV
    Mol Cell Endocrinol; 2019 Mar; 484():34-41. PubMed ID: 30703488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silent scaffolds: inhibition OF c-Jun N-terminal kinase 3 activity in cell by dominant-negative arrestin-3 mutant.
    Breitman M; Kook S; Gimenez LE; Lizama BN; Palazzo MC; Gurevich EV; Gurevich VV
    J Biol Chem; 2012 Jun; 287(23):19653-64. PubMed ID: 22523077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cone arrestin binding to JNK3 and Mdm2: conformational preference and localization of interaction sites.
    Song X; Gurevich EV; Gurevich VV
    J Neurochem; 2007 Nov; 103(3):1053-62. PubMed ID: 17680991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin.
    Yun Y; Yoon HJ; Jeong Y; Choi Y; Jang S; Chung KY; Lee HH
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301934120. PubMed ID: 37399373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Many faces of the GPCR-arrestin interaction.
    Kim K; Chung KY
    Arch Pharm Res; 2020 Sep; 43(9):890-899. PubMed ID: 32803684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane phosphoinositides regulate GPCR-β-arrestin complex assembly and dynamics.
    Janetzko J; Kise R; Barsi-Rhyne B; Siepe DH; Heydenreich FM; Kawakami K; Masureel M; Maeda S; Garcia KC; von Zastrow M; Inoue A; Kobilka BK
    Cell; 2022 Nov; 185(24):4560-4573.e19. PubMed ID: 36368322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic interaction between the dual specificity phosphatase MKP7 and the JNK3 scaffold protein beta-arrestin 2.
    Willoughby EA; Collins MK
    J Biol Chem; 2005 Jul; 280(27):25651-8. PubMed ID: 15888437
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Insights into Arrestin Recruitment to GPCRs.
    Spillmann M; Thurner L; Romantini N; Zimmermann M; Meger B; Behe M; Waldhoer M; Schertler GFX; Berger P
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32668755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How does arrestin assemble MAPKs into a signaling complex?
    Song X; Coffa S; Fu H; Gurevich VV
    J Biol Chem; 2009 Jan; 284(1):685-695. PubMed ID: 19001375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.