These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37371072)

  • 21. Murine muscle cell models for Pompe disease and their use in studying therapeutic approaches.
    Takikita S; Myerowitz R; Zaal K; Raben N; Plotz PH
    Mol Genet Metab; 2009 Apr; 96(4):208-17. PubMed ID: 19167256
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defect in degradation of glycogenin-exposed residual glycogen in lysosomes is the fundamental pathomechanism of Pompe disease.
    Zhang N; Liu F; Zhao Y; Sun X; Wen B; Lu JQ; Yan C; Li D
    J Pathol; 2024 May; 263(1):8-21. PubMed ID: 38332735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transcriptome assessment of the Pompe (Gaa-/-) mouse spinal cord indicates widespread neuropathology.
    Turner SMF; Falk DJ; Byrne BJ; Fuller DD
    Physiol Genomics; 2016 Nov; 48(11):785-794. PubMed ID: 27614205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synergistic Efficacy from Gene Therapy with Coreceptor Blockade and a β2-Agonist in Murine Pompe Disease.
    Han SO; Li S; Bird A; Koeberl D
    Hum Gene Ther; 2015 Nov; 26(11):743-50. PubMed ID: 26417913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antibody formation and mannose-6-phosphate receptor expression impact the efficacy of muscle-specific transgene expression in murine Pompe disease.
    Sun B; Li S; Bird A; Yi H; Kemper A; Thurberg BL; Koeberl DD
    J Gene Med; 2010 Nov; 12(11):881-91. PubMed ID: 20967919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antibody-mediated enzyme replacement therapy targeting both lysosomal and cytoplasmic glycogen in Pompe disease.
    Yi H; Sun T; Armstrong D; Borneman S; Yang C; Austin S; Kishnani PS; Sun B
    J Mol Med (Berl); 2017 May; 95(5):513-521. PubMed ID: 28154884
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle Proteomic Profile before and after Enzyme Replacement Therapy in Late-Onset Pompe Disease.
    Moriggi M; Capitanio D; Torretta E; Barbacini P; Bragato C; Sartori P; Moggio M; Maggi L; Mora M; Gelfi C
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33799647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Remarkably low fibroblast acid α-glucosidase activity in three adults with Pompe disease.
    Wens SC; Kroos MA; de Vries JM; Hoogeveen-Westerveld M; Wijgerde MG; van Doorn PA; van der Ploeg AT; Reuser AJ
    Mol Genet Metab; 2012 Nov; 107(3):485-9. PubMed ID: 23000108
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential muscular glycogen clearance after enzyme replacement therapy in a mouse model of Pompe disease.
    Hawes ML; Kennedy W; O'Callaghan MW; Thurberg BL
    Mol Genet Metab; 2007 Aug; 91(4):343-51. PubMed ID: 17572127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Glycogen accumulation in smooth muscle of a Pompe disease mouse model.
    McCall AL; Dhindsa JS; Bailey AM; Pucci LA; Strickland LM; ElMallah MK
    J Smooth Muscle Res; 2021; 57(0):8-18. PubMed ID: 33883348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors.
    Fraites TJ; Schleissing MR; Shanely RA; Walter GA; Cloutier DA; Zolotukhin I; Pauly DF; Raben N; Plotz PH; Powers SK; Kessler PD; Byrne BJ
    Mol Ther; 2002 May; 5(5 Pt 1):571-8. PubMed ID: 11991748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Suppression of mTORC1 activation in acid-α-glucosidase-deficient cells and mice is ameliorated by leucine supplementation.
    Shemesh A; Wang Y; Yang Y; Yang GS; Johnson DE; Backer JM; Pessin JE; Zong H
    Am J Physiol Regul Integr Comp Physiol; 2014 Nov; 307(10):R1251-9. PubMed ID: 25231351
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle diffusion MRI reveals autophagic buildup in a mouse model for Pompe disease.
    Rohm M; Russo G; Helluy X; Froeling M; Umathum V; Südkamp N; Manahan-Vaughan D; Rehmann R; Forsting J; Jacobsen F; Roos A; Shin Y; Schänzer A; Vorgerd M; Schlaffke L
    Sci Rep; 2023 Dec; 13(1):22822. PubMed ID: 38129558
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adjunctive β2-agonist treatment reduces glycogen independently of receptor-mediated acid α-glucosidase uptake in the limb muscles of mice with Pompe disease.
    Farah BL; Madden L; Li S; Nance S; Bird A; Bursac N; Yen PM; Young SP; Koeberl DD
    FASEB J; 2014 May; 28(5):2272-80. PubMed ID: 24448824
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Skeletal Muscle Model of Infantile-onset Pompe Disease with Patient-specific iPS Cells.
    Yoshida T; Awaya T; Jonouchi T; Kimura R; Kimura S; Era T; Heike T; Sakurai H
    Sci Rep; 2017 Oct; 7(1):13473. PubMed ID: 29044175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pompe disease ascertained through The Lantern Project, 2018-2021: Next-generation sequencing and enzymatic testing to overcome obstacles to diagnosis.
    Sniderman King L; Pan Y; Nallamilli BRR; Hegde M; Jagannathan L; Ramachander V; Lucas A; Markind J; Colzani R
    Mol Genet Metab; 2023 May; 139(1):107565. PubMed ID: 37087815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A cross-sectional single-centre study on the spectrum of Pompe disease, German patients: molecular analysis of the GAA gene, manifestation and genotype-phenotype correlations.
    Herzog A; Hartung R; Reuser AJ; Hermanns P; Runz H; Karabul N; Gökce S; Pohlenz J; Kampmann C; Lampe C; Beck M; Mengel E
    Orphanet J Rare Dis; 2012 Jun; 7():35. PubMed ID: 22676651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease.
    Raben N; Hill V; Shea L; Takikita S; Baum R; Mizushima N; Ralston E; Plotz P
    Hum Mol Genet; 2008 Dec; 17(24):3897-908. PubMed ID: 18782848
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Moss-Derived Human Recombinant GAA Provides an Optimized Enzyme Uptake in Differentiated Human Muscle Cells of Pompe Disease.
    Hintze S; Limmer S; Dabrowska-Schlepp P; Berg B; Krieghoff N; Busch A; Schaaf A; Meinke P; Schoser B
    Int J Mol Sci; 2020 Apr; 21(7):. PubMed ID: 32290314
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle.
    Koeberl DD; Luo X; Sun B; McVie-Wylie A; Dai J; Li S; Banugaria SG; Chen YT; Bali DS
    Mol Genet Metab; 2011 Jun; 103(2):107-12. PubMed ID: 21397538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.