These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 37371078)

  • 1. A Systematic Review on Quiescent State Research Approaches in
    Opalek M; Tutaj H; Pirog A; Smug BJ; Rutkowska J; Wloch-Salamon D
    Cells; 2023 Jun; 12(12):. PubMed ID: 37371078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A common strategy for initiating the transition from proliferation to quiescence.
    Miles S; Breeden L
    Curr Genet; 2017 May; 63(2):179-186. PubMed ID: 27544284
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms that Link Chronological Aging to Cellular Quiescence in Budding Yeast.
    Mohammad K; Baratang Junio JA; Tafakori T; Orfanos E; Titorenko VI
    Int J Mol Sci; 2020 Jul; 21(13):. PubMed ID: 32630624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular quiescence in budding yeast.
    Sun S; Gresham D
    Yeast; 2021 Jan; 38(1):12-29. PubMed ID: 33350503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence.
    Ross EM; Maxwell PH
    Exp Gerontol; 2018 Jul; 108():189-200. PubMed ID: 29705357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xbp1 directs global repression of budding yeast transcription during the transition to quiescence and is important for the longevity and reversibility of the quiescent state.
    Miles S; Li L; Davison J; Breeden LL
    PLoS Genet; 2013 Oct; 9(10):e1003854. PubMed ID: 24204289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cell biology of quiescent yeast - a diversity of individual scenarios.
    Sagot I; Laporte D
    J Cell Sci; 2019 Jan; 132(1):. PubMed ID: 30602574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Roles of
    Wloch-Salamon DM; Tomala K; Aggeli D; Dunn B
    G3 (Bethesda); 2017 Jun; 7(6):1899-1911. PubMed ID: 28450371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "Sleeping beauty": quiescence in Saccharomyces cerevisiae.
    Gray JV; Petsko GA; Johnston GC; Ringe D; Singer RA; Werner-Washburne M
    Microbiol Mol Biol Rev; 2004 Jun; 68(2):187-206. PubMed ID: 15187181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast.
    Kumar R; Srivastava S
    Sci Rep; 2016 Aug; 6():32031. PubMed ID: 27558777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic interaction profiles of regulatory kinases differ between environmental conditions and cellular states.
    Sun S; Baryshnikova A; Brandt N; Gresham D
    Mol Syst Biol; 2020 May; 16(5):e9167. PubMed ID: 32449603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth signaling promotes chronological aging in budding yeast by inducing superoxide anions that inhibit quiescence.
    Weinberger M; Mesquita A; Caroll T; Marks L; Yang H; Zhang Z; Ludovico P; Burhans WC
    Aging (Albany NY); 2010 Oct; 2(10):709-26. PubMed ID: 21076178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The budding yeast transition to quiescence.
    Miles S; Bradley GT; Breeden LL
    Yeast; 2021 Jan; 38(1):30-38. PubMed ID: 33350501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling quiescence-specific repressive chromatin domains.
    Swygert SG; Tsukiyama T
    Curr Genet; 2019 Oct; 65(5):1145-1151. PubMed ID: 31055637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures.
    Allen C; Büttner S; Aragon AD; Thomas JA; Meirelles O; Jaetao JE; Benn D; Ruby SW; Veenhuis M; Madeo F; Werner-Washburne M
    J Cell Biol; 2006 Jul; 174(1):89-100. PubMed ID: 16818721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell cycle-independent integration of stress signals by Xbp1 promotes Non-G1/G0 quiescence entry.
    Argüello-Miranda O; Marchand AJ; Kennedy T; Russo MAX; Noh J
    J Cell Biol; 2022 Jan; 221(1):. PubMed ID: 34694336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures.
    Davidson GS; Joe RM; Roy S; Meirelles O; Allen CP; Wilson MR; Tapia PH; Manzanilla EE; Dodson AE; Chakraborty S; Carter M; Young S; Edwards B; Sklar L; Werner-Washburne M
    Mol Biol Cell; 2011 Apr; 22(7):988-98. PubMed ID: 21289090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. When yeast cells change their mind: cell cycle "Start" is reversible under starvation.
    Irvali D; Schlottmann FP; Muralidhara P; Nadelson I; Kleemann K; Wood NE; Doncic A; Ewald JC
    EMBO J; 2023 Jan; 42(2):e110321. PubMed ID: 36420556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of proliferation by the budding yeast Saccharomyces cerevisiae.
    Johnston GC; Singer RA
    Biochem Cell Biol; 1990 Feb; 68(2):427-35. PubMed ID: 2160831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.