These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 37371114)
1. Isolation and Characterization of the Primary Marmoset ( Jang HY; Cho CS; Shin YM; Kwak J; Sung YH; Kang BC; Kim JH Cells; 2023 Jun; 12(12):. PubMed ID: 37371114 [TBL] [Abstract][Full Text] [Related]
2. Topographic protein profiling of the age-related proteome in the retinal pigment epithelium of Callithrix jacchus with respect to macular degeneration. König S; Hadrian K; Schlatt S; Wistuba J; Thanos S; Böhm MRR J Proteomics; 2019 Jan; 191():1-15. PubMed ID: 29859334 [TBL] [Abstract][Full Text] [Related]
3. Elimination of senescent cells inhibits epithelial-mesenchymal transition of retinal pigment epithelial cells. Gao F; Wang L; Wu B; Ou Q; Tian H; Xu J; Jin C; Zhang J; Wang J; Lu L; Xu GT Exp Eye Res; 2022 Oct; 223():109207. PubMed ID: 35926646 [TBL] [Abstract][Full Text] [Related]
4. Age-related distribution and potential role of SNCB in topographically different retinal areas of the common marmoset Callithrix jacchus, including the macula. Hadrian K; Melkonyan H; Schlatt S; Wistuba J; Wasmuth S; Heiligenhaus A; Thanos S; Böhm MRR Exp Eye Res; 2019 Aug; 185():107676. PubMed ID: 31128101 [TBL] [Abstract][Full Text] [Related]
5. A cell culture condition that induces the mesenchymal-epithelial transition of dedifferentiated porcine retinal pigment epithelial cells. Tian H; Xu JY; Tian Y; Cao Y; Lian C; Ou Q; Wu B; Jin C; Gao F; Wang J; Zhang J; Zhang J; Li W; Lu L; Xu GT Exp Eye Res; 2018 Dec; 177():160-172. PubMed ID: 30096326 [TBL] [Abstract][Full Text] [Related]
6. Cell culture models to study retinal pigment epithelium-related pathogenesis in age-related macular degeneration. Bharti K; den Hollander AI; Lakkaraju A; Sinha D; Williams DS; Finnemann SC; Bowes-Rickman C; Malek G; D'Amore PA Exp Eye Res; 2022 Sep; 222():109170. PubMed ID: 35835183 [TBL] [Abstract][Full Text] [Related]
7. Modeling of mitochondrial bioenergetics and autophagy impairment in MELAS-mutant iPSC-derived retinal pigment epithelial cells. Bhattacharya S; Yin J; Huo W; Chaum E Stem Cell Res Ther; 2022 Jun; 13(1):260. PubMed ID: 35715869 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms of extracellular vesicle uptake in stressed retinal pigment epithelial cell monolayers. Nicholson C; Shah N; Ishii M; Annamalai B; Brandon C; Rodgers J; Nowling T; Rohrer B Biochim Biophys Acta Mol Basis Dis; 2020 Mar; 1866(3):165608. PubMed ID: 31740401 [TBL] [Abstract][Full Text] [Related]
9. NURR1 expression regulates retinal pigment epithelial-mesenchymal transition and age-related macular degeneration phenotypes. Yao PL; Parmar VM; Choudhary M; Malek G Proc Natl Acad Sci U S A; 2022 Jul; 119(28):e2202256119. PubMed ID: 35867766 [TBL] [Abstract][Full Text] [Related]
10. Altered bioenergetics and enhanced resistance to oxidative stress in human retinal pigment epithelial cells from donors with age-related macular degeneration. Ferrington DA; Ebeling MC; Kapphahn RJ; Terluk MR; Fisher CR; Polanco JR; Roehrich H; Leary MM; Geng Z; Dutton JR; Montezuma SR Redox Biol; 2017 Oct; 13():255-265. PubMed ID: 28600982 [TBL] [Abstract][Full Text] [Related]
12. Stem cell-derived retinal pigment epithelium from patients with age-related macular degeneration exhibit reduced metabolism and matrix interactions. Gong J; Cai H; ; Noggle S; Paull D; Rizzolo LJ; Del Priore LV; Fields MA Stem Cells Transl Med; 2020 Mar; 9(3):364-376. PubMed ID: 31840941 [TBL] [Abstract][Full Text] [Related]
13. A Semiautomated, Phenotypic, Storm T; Wilson I; Campbell R; Bolinches-Amorós A; Russell AJ; Davies SG; Barnard AR; MacLaren RE J Ocul Pharmacol Ther; 2020 May; 36(4):257-266. PubMed ID: 32027217 [No Abstract] [Full Text] [Related]
14. FoxP3 expression by retinal pigment epithelial cells: transcription factor with potential relevance for the pathology of age-related macular degeneration. Alfaar AS; Stürzbecher L; Diedrichs-Möhring M; Lam M; Roubeix C; Ritter J; Schumann K; Annamalai B; Pompös IM; Rohrer B; Sennlaub F; Reichhart N; Wildner G; Strauß O J Neuroinflammation; 2022 Oct; 19(1):260. PubMed ID: 36273134 [TBL] [Abstract][Full Text] [Related]
15. AMD-Like Substrate Causes Epithelial Mesenchymal Transition in iPSC-Derived Retinal Pigment Epithelial Cells Wild Type but Not Chinchilla B; Fernandez-Godino R Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360950 [TBL] [Abstract][Full Text] [Related]
16. CHAC1 as a Novel Contributor of Ferroptosis in Retinal Pigment Epithelial Cells with Oxidative Damage. Liu Y; Wu D; Fu Q; Hao S; Gu Y; Zhao W; Chen S; Sheng F; Xu Y; Chen Z; Yao K Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36675091 [TBL] [Abstract][Full Text] [Related]
17. Age-related changes of cystatin C expression and polarized secretion by retinal pigment epithelium: potential age-related macular degeneration links. Kay P; Yang YC; Hiscott P; Gray D; Maminishkis A; Paraoan L Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):926-34. PubMed ID: 24458156 [TBL] [Abstract][Full Text] [Related]
18. Design, development and characterization of synthetic Bruch's membranes. Surrao DC; Greferath U; Chau YQ; Skabo SJ; Huynh M; Shelat KJ; Limnios IJ; Fletcher EL; Liu Q Acta Biomater; 2017 Dec; 64():357-376. PubMed ID: 28951331 [TBL] [Abstract][Full Text] [Related]
19. Attainment of polarity promotes growth factor secretion by retinal pigment epithelial cells: relevance to age-related macular degeneration. Sonoda S; Sreekumar PG; Kase S; Spee C; Ryan SJ; Kannan R; Hinton DR Aging (Albany NY); 2009 Dec; 2(1):28-42. PubMed ID: 20228934 [TBL] [Abstract][Full Text] [Related]
20. Complement activation contributes to subretinal fibrosis through the induction of epithelial-to-mesenchymal transition (EMT) in retinal pigment epithelial cells. Llorián-Salvador M; Byrne EM; Szczepan M; Little K; Chen M; Xu H J Neuroinflammation; 2022 Jul; 19(1):182. PubMed ID: 35831910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]