These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37371461)

  • 1. HIV-1 Transcriptional Activator Tat Inhibits
    Anastasopoulou S; Georgakopoulos T; Mouzaki A
    Biomolecules; 2023 May; 13(6):. PubMed ID: 37371461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Semen Exosomes Promote Transcriptional Silencing of HIV-1 by Disrupting NF-κB/Sp1/Tat Circuitry.
    Welch JL; Kaddour H; Schlievert PM; Stapleton JT; Okeoma CM
    J Virol; 2018 Nov; 92(21):. PubMed ID: 30111566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FoxO4 negatively controls Tat-mediated HIV-1 transcription through the post-transcriptional suppression of Tat encoding mRNA.
    Oteiza A; Mechti N
    J Gen Virol; 2017 Jul; 98(7):1864-1878. PubMed ID: 28699853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Stronger Transcription Regulatory Circuit of HIV-1C Drives the Rapid Establishment of Latency with Implications for the Direct Involvement of Tat.
    Chakraborty S; Kabi M; Ranga U
    J Virol; 2020 Sep; 94(19):. PubMed ID: 32669338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tip110 protein binds to unphosphorylated RNA polymerase II and promotes its phosphorylation and HIV-1 long terminal repeat transcription.
    Zhao W; Liu Y; Timani KA; He JJ
    J Biol Chem; 2014 Jan; 289(1):190-202. PubMed ID: 24217245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling the Function of TATA Box Binding Protein in Transcriptional Changes Induced by HIV-1 Tat in Innate Immune Cells and the Effect of Methamphetamine Exposure.
    Tjitro R; Campbell LA; Basova L; Johnson J; Najera JA; Lindsey A; Marcondes MCG
    Front Immunol; 2018; 9():3110. PubMed ID: 30778358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitotic deacetylase complex (MiDAC) recognizes the HIV-1 core promoter to control activated viral gene expression.
    Wilhelm E; Poirier M; Da Rocha M; Bédard M; McDonald PP; Lavigne P; Hunter CL; Bell B
    PLoS Pathog; 2024 May; 20(5):e1011821. PubMed ID: 38781120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The control of HIV transcription: keeping RNA polymerase II on track.
    Ott M; Geyer M; Zhou Q
    Cell Host Microbe; 2011 Nov; 10(5):426-35. PubMed ID: 22100159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained induction of NF-kappa B is required for efficient expression of latent human immunodeficiency virus type 1.
    Williams SA; Kwon H; Chen LF; Greene WC
    J Virol; 2007 Jun; 81(11):6043-56. PubMed ID: 17376917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellular RelB interacts with the transactivator Tat and enhance HIV-1 expression.
    Wang M; Yang W; Chen Y; Wang J; Tan J; Qiao W
    Retrovirology; 2018 Sep; 15(1):65. PubMed ID: 30241541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The BET bromodomain inhibitor JQ1 activates HIV latency through antagonizing Brd4 inhibition of Tat-transactivation.
    Li Z; Guo J; Wu Y; Zhou Q
    Nucleic Acids Res; 2013 Jan; 41(1):277-87. PubMed ID: 23087374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel RNA polymerase II-containing complex potentiates Tat-enhanced HIV-1 transcription.
    Parada CA; Roeder RG
    EMBO J; 1999 Jul; 18(13):3688-701. PubMed ID: 10393184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Host Factors on the Regulation of Tat-Mediated HIV-1 Transcription.
    Mousseau G; Valente ST
    Curr Pharm Des; 2017; 23(28):4079-4090. PubMed ID: 28641539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIV-1 Tat-associated RNA polymerase C-terminal domain kinase, CDK2, phosphorylates CDK7 and stimulates Tat-mediated transcription.
    Nekhai S; Zhou M; Fernandez A; Lane WS; Lamb NJ; Brady J; Kumar A
    Biochem J; 2002 Jun; 364(Pt 3):649-57. PubMed ID: 12049628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of HIV-1 transcription and replication by a newly identified cyclin T1 splice variant.
    Gao G; Wu X; Zhou J; He M; He JJ; Guo D
    J Biol Chem; 2013 May; 288(20):14297-14309. PubMed ID: 23569210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic variation of the HIV-1 subtype C transmitted/founder viruses long terminal repeat elements and the impact on transcription activation potential and clinical disease outcomes.
    Madlala P; Mkhize Z; Naicker S; Khathi SP; Maikoo S; Gopee K; Dong KL; Ndung'u T
    PLoS Pathog; 2023 Jun; 19(6):e1011194. PubMed ID: 37307292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NF-kappaB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation.
    Williams SA; Chen LF; Kwon H; Ruiz-Jarabo CM; Verdin E; Greene WC
    EMBO J; 2006 Jan; 25(1):139-49. PubMed ID: 16319923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition step during assembly of HIV Tat:P-TEFb transcription complexes and transfer to TAR RNA.
    D'Orso I; Jang GM; Pastuszak AW; Faust TB; Quezada E; Booth DS; Frankel AD
    Mol Cell Biol; 2012 Dec; 32(23):4780-93. PubMed ID: 23007159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drastic decrease of transcription activity due to hypermutated long terminal repeat (LTR) region in different HIV-1 subtypes and recombinants.
    de Arellano ER; Alcamí J; López M; Soriano V; Holguín A
    Antiviral Res; 2010 Nov; 88(2):152-9. PubMed ID: 20713090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BRCA1 functions as a novel transcriptional cofactor in HIV-1 infection.
    Guendel I; Meltzer BW; Baer A; Dever SM; Valerie K; Guo J; Wu Y; Kehn-Hall K
    Virol J; 2015 Mar; 12():40. PubMed ID: 25879655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.