These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37372126)

  • 21. Cellular automata simulation of topological effects on the dynamics of feed-forward motifs.
    Apte AA; Cain JW; Bonchev DG; Fong SS
    J Biol Eng; 2008 Feb; 2():2. PubMed ID: 18304325
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stabilization of antithetic control via molecular buffering.
    Hancock EJ; Oyarzún DA
    J R Soc Interface; 2022 Mar; 19(188):20210762. PubMed ID: 35259958
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Negatively Competitive Incoherent Feedforward Loops Mitigate Winner-Take-All Resource Competition.
    Stone A; Ryan J; Tang X; Tian XJ
    ACS Synth Biol; 2022 Dec; 11(12):3986-3995. PubMed ID: 36355441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Designing synthetic networks in silico: a generalised evolutionary algorithm approach.
    Smith RW; van Sluijs B; Fleck C
    BMC Syst Biol; 2017 Dec; 11(1):118. PubMed ID: 29197394
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling gene regulatory network motifs using Statecharts.
    Fioravanti F; Helmer-Citterich M; Nardelli E
    BMC Bioinformatics; 2012 Mar; 13 Suppl 4(Suppl 4):S20. PubMed ID: 22536967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Systematic analysis of noise reduction properties of coupled and isolated feed-forward loops.
    Chakravarty S; Csikász-Nagy A
    PLoS Comput Biol; 2021 Dec; 17(12):e1009622. PubMed ID: 34860832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional and evolutionary inference in gene networks: does topology matter?
    Siegal ML; Promislow DE; Bergman A
    Genetica; 2007 Jan; 129(1):83-103. PubMed ID: 16897451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust network topologies for temperature-inducible bioswitches.
    Wu D; Wang H; Ouyang Q
    J Biol Eng; 2022 May; 16(1):12. PubMed ID: 35606858
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification, visualization, statistical analysis and mathematical modeling of high-feedback loops in gene regulatory networks.
    Nordick B; Hong T
    BMC Bioinformatics; 2021 Oct; 22(1):481. PubMed ID: 34607562
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oscillatory stimuli differentiate adapting circuit topologies.
    Rahi SJ; Larsch J; Pecani K; Katsov AY; Mansouri N; Tsaneva-Atanasova K; Sontag ED; Cross FR
    Nat Methods; 2017 Oct; 14(10):1010-1016. PubMed ID: 28846089
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly designable phenotypes and mutational buffers emerge from a systematic mapping between network topology and dynamic output.
    Nochomovitz YD; Li H
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4180-5. PubMed ID: 16537505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Incoherent modulation of bi-stable dynamics orchestrates the Mushroom and Isola bifurcations.
    Giri A; Kar S
    J Theor Biol; 2021 Dec; 530():110882. PubMed ID: 34454943
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Systems-Theoretic Approaches to Design Biological Networks with Desired Functionalities.
    Bhattacharya P; Raman K; Tangirala AK
    Methods Mol Biol; 2021; 2189():133-155. PubMed ID: 33180299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach.
    Ma HW; Buer J; Zeng AP
    BMC Bioinformatics; 2004 Dec; 5():199. PubMed ID: 15603590
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive molecular networks controlling chemotactic migration: dynamic inputs and selection of the network architecture.
    Chang H; Levchenko A
    Philos Trans R Soc Lond B Biol Sci; 2013; 368(1629):20130117. PubMed ID: 24062588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks.
    Ma'ayan A; Cecchi GA; Wagner J; Rao AR; Iyengar R; Stolovitzky G
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19235-40. PubMed ID: 19033453
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The cost of sensitive response and accurate adaptation in networks with an incoherent type-1 feed-forward loop.
    Lan G; Tu Y
    J R Soc Interface; 2013 Oct; 10(87):20130489. PubMed ID: 23883955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hierarchy of biomolecular proportional-integral-derivative feedback controllers for robust perfect adaptation and dynamic performance.
    Filo M; Kumar S; Khammash M
    Nat Commun; 2022 Apr; 13(1):2119. PubMed ID: 35440114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evolutionary modelling of feed forward loops in gene regulatory networks.
    Cooper MB; Loose M; Brookfield JF
    Biosystems; 2008 Jan; 91(1):231-44. PubMed ID: 18082936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential evolutionary conservation of motif modes in the yeast protein interaction network.
    Lee WP; Jeng BC; Pai TW; Tsai CP; Yu CY; Tzou WS
    BMC Genomics; 2006 Apr; 7():89. PubMed ID: 16638125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.