These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37372210)

  • 1. Exploring the Role of Indirect Coupling in Complex Networks: The Emergence of Chaos and Entropy in Fractional Discrete Nodes.
    Zambrano-Serrano E; Platas-Garza MA; Posadas-Castillo C; Arellano-Delgado A; Cruz-Hernández C
    Entropy (Basel); 2023 May; 25(6):. PubMed ID: 37372210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The discrete fractional duffing system: Chaos, 0-1 test, C
    Ouannas A; Khennaoui AA; Momani S; Pham VT
    Chaos; 2020 Aug; 30(8):083131. PubMed ID: 32872811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Analysis and FPGA Implementation of a New Fractional-Order Hopfield Neural Network System under Electromagnetic Radiation.
    Yu F; Lin Y; Xu S; Yao W; Gracia YM; Cai S
    Biomimetics (Basel); 2023 Nov; 8(8):. PubMed ID: 38132498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional Form of a Chaotic Map without Fixed Points: Chaos, Entropy and Control.
    Ouannas A; Wang X; Khennaoui AA; Bendoukha S; Pham VT; Alsaadi FE
    Entropy (Basel); 2018 Sep; 20(10):. PubMed ID: 33265809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chaos and multi-layer attractors in asymmetric neural networks coupled with discrete fractional memristor.
    He S; Vignesh D; Rondoni L; Banerjee S
    Neural Netw; 2023 Oct; 167():572-587. PubMed ID: 37708779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chaos in fractional-order discrete neural networks with application to image encryption.
    Chen L; Yin H; Huang T; Yuan L; Zheng S; Yin L
    Neural Netw; 2020 May; 125():174-184. PubMed ID: 32135353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical Analysis of a New Chaotic Fractional Discrete-Time System and Its Control.
    Almatroud AO; Khennaoui AA; Ouannas A; Grassi G; Al-Sawalha MM; Gasri A
    Entropy (Basel); 2020 Nov; 22(12):. PubMed ID: 33266528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the trustworthiness of chaos and synchronization of chaotic satellite model: a practice of discrete fractional-order approaches.
    Rashid S; Hamidi SZ; Akram S; Alosaimi M; Chu YM
    Sci Rep; 2024 May; 14(1):10674. PubMed ID: 38724584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A study of the nonlinear dynamics of human behavior and its digital hardware implementation.
    ElSafty AH; Tolba MF; Said LA; Madian AH; Radwan AG
    J Adv Res; 2020 Sep; 25():111-123. PubMed ID: 32922979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotic dynamics in a novel COVID-19 pandemic model described by commensurate and incommensurate fractional-order derivatives.
    Debbouche N; Ouannas A; Batiha IM; Grassi G
    Nonlinear Dyn; 2022; 109(1):33-45. PubMed ID: 34511721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaotic Image Encryption Using Hopfield and Hindmarsh-Rose Neurons Implemented on FPGA.
    Tlelo-Cuautle E; Díaz-Muñoz JD; González-Zapata AM; Li R; León-Salas WD; Fernández FV; Guillén-Fernández O; Cruz-Vega I
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32121310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The fractional-order discrete COVID-19 pandemic model: stability and chaos.
    Abbes A; Ouannas A; Shawagfeh N; Jahanshahi H
    Nonlinear Dyn; 2023; 111(1):965-983. PubMed ID: 35992382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying changes in the dynamical patterns in two physical models involving new Caputo operator.
    Matouk AE
    J Adv Res; 2025 Jan; 67():173-184. PubMed ID: 38307412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and circuit implementation of a non-equilibrium fractional-order chaotic system with hidden multistability and special offset-boosting.
    Yan S; Wang E; Wang Q
    Chaos; 2023 Mar; 33(3):033107. PubMed ID: 37003813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Measure Inspired by Lyapunov Exponents for the Characterization of Dynamics in State-Transition Networks.
    Sándor B; Schneider B; Lázár ZI; Ercsey-Ravasz M
    Entropy (Basel); 2021 Jan; 23(1):. PubMed ID: 33445685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of the Caputo fractional difference operator on a new discrete COVID-19 model.
    Abbes A; Ouannas A; Shawagfeh N; Grassi G
    Results Phys; 2022 Aug; 39():105797. PubMed ID: 35818497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional-order quantum kicked top map and its discrete dynamic behaviors.
    Liu ZY; Xia TC; Wang TT
    Chaos; 2023 Jan; 33(1):013133. PubMed ID: 36725640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigating climate complexity and its control via hyperchaotic dynamics in a 4D Caputo fractional model.
    Naik MK; Baishya C; Premakumari RN; Samei ME
    Sci Rep; 2024 Aug; 14(1):18015. PubMed ID: 39097610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study for the chaos and complexity of the synchronous oscillations in electrically coupled abnormal neurons.
    Ge M; Guo H; Dong G; Sun M; Jia W; Shen X; Yan W
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2006():550-3. PubMed ID: 17271735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chaotic attractors that exist only in fractional-order case.
    Matouk AE
    J Adv Res; 2023 Mar; 45():183-192. PubMed ID: 36849217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.