BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37372223)

  • 1. Detection of Respiratory Events during Sleep Based on Fusion Analysis and Entropy Features of Cardiopulmonary Signals.
    Yan X; Liu J; Wang L; Wang S; Zhang S; Xin Y
    Entropy (Basel); 2023 May; 25(6):. PubMed ID: 37372223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic identification of respiratory events based on nasal airflow and respiratory effort of the chest and abdomen.
    Liu J; Li Q; Chen Y; Wang B; Li Y; Xin Y
    Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 33887711
    [No Abstract]   [Full Text] [Related]  

  • 3. A novel method to precisely detect apnea and hypopnea events by airflow and oximetry signals.
    Huang W; Guo B; Shen Y; Tang X
    Comput Biol Med; 2017 Sep; 88():32-40. PubMed ID: 28672177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sleep Apnea and Hypopnea Events Detection Based on Airflow Signals Using LSTM Network.
    Yang W; Fan J; Wang X; Liao Q
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2576-2579. PubMed ID: 31946423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Portable Sleep Apnea Syndrome Screening and Event Detection Using Long Short-Term Memory Recurrent Neural Network.
    Chang HC; Wu HT; Huang PC; Ma HP; Lo YL; Huang YH
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33113849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Utility of portable monitoring device with airflow, oxygen saturation and respiratory effort in the diagnosis of sleep apnea hypopnea syndrome].
    Yan H; Dong XS; Li YQ; Liu YN; Li J; An P; Zhao L; Gao ZC; Han F
    Zhonghua Yi Xue Za Zhi; 2013 Feb; 93(6):415-8. PubMed ID: 23660258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of bispectrum in the screening of pediatric sleep apnea-hypopnea syndrome using oximetry recordings.
    Vaquerizo-Villar F; Álvarez D; Kheirandish-Gozal L; Gutiérrez-Tobal GC; Barroso-García V; Crespo A; Del Campo F; Gozal D; Hornero R
    Comput Methods Programs Biomed; 2018 Mar; 156():141-149. PubMed ID: 29428066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Usefulness of Spectral Analysis of Respiratory Rate Variability to Help in Pediatric Sleep Apnea-Hypopnea Syndrome Diagnosis.
    Barroso-Garcia V; Gutierrez-Tobal GC; Kheirandish-Gozal L; Alvarez D; Vaquerizo-Villar F; Del Campo F; Gozal D; Hornero R
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4580-4583. PubMed ID: 31946884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An LSTM Network for Apnea and Hypopnea Episodes Detection in Respiratory Signals.
    Drzazga J; Cyganek B
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of sleep disordered breathing and its central/obstructive character using nasal cannula and finger pulse oximeter.
    Sommermeyer D; Zou D; Grote L; Hedner J
    J Clin Sleep Med; 2012 Oct; 8(5):527-33. PubMed ID: 23066364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-contact diagnostic system for sleep apnea-hypopnea syndrome based on amplitude and phase analysis of thoracic and abdominal Doppler radars.
    Kagawa M; Tojima H; Matsui T
    Med Biol Eng Comput; 2016 May; 54(5):789-98. PubMed ID: 26307200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel deep domain adaptation method for automated detection of sleep apnea/hypopnea events.
    Du Z; Wang J; Ren Y; Ren Y
    Physiol Meas; 2023 Feb; 44(1):. PubMed ID: 36595309
    [No Abstract]   [Full Text] [Related]  

  • 13. Diagnosis of obstructive sleep apnea in children based on the XGBoost algorithm using nocturnal heart rate and blood oxygen feature.
    Ye P; Qin H; Zhan X; Wang Z; Liu C; Song B; Kong Y; Jia X; Qi Y; Ji J; Chang L; Ni X; Tai J
    Am J Otolaryngol; 2023; 44(2):103714. PubMed ID: 36738700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time apnea-hypopnea event detection during sleep by convolutional neural networks.
    Choi SH; Yoon H; Kim HS; Kim HB; Kwon HB; Oh SM; Lee YJ; Park KS
    Comput Biol Med; 2018 Sep; 100():123-131. PubMed ID: 29990645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Deep Learning Framework for Automatic Sleep Apnea Classification Based on Empirical Mode Decomposition Derived from Single-Lead Electrocardiogram.
    Setiawan F; Lin CW
    Life (Basel); 2022 Sep; 12(10):. PubMed ID: 36294943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portable diagnosis of sleep apnea with the validation of individual event detection.
    Saha S; Kabir M; Montazeri Ghahjaverestan N; Hafezi M; Gavrilovic B; Zhu K; Alshaer H; Yadollahi A
    Sleep Med; 2020 May; 69():51-57. PubMed ID: 32045854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic identification of sleep and wakefulness using single-channel EEG and respiratory polygraphy signals for the diagnosis of obstructive sleep apnea.
    Sabil A; Vanbuis J; Baffet G; Feuilloy M; Le Vaillant M; Meslier N; Gagnadoux F
    J Sleep Res; 2019 Apr; 28(2):e12795. PubMed ID: 30478923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cascading detection model for prediction of apnea-hypopnea events based on nasal flow and arterial blood oxygen saturation.
    Yu H; Deng C; Sun J; Chen Y; Cao Y
    Sleep Breath; 2020 Jun; 24(2):483-490. PubMed ID: 31278530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated scoring of obstructive sleep apnea and hypopnea events using short-term electrocardiogram recordings.
    Khandoker AH; Gubbi J; Palaniswami M
    IEEE Trans Inf Technol Biomed; 2009 Nov; 13(6):1057-67. PubMed ID: 19775974
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.