These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37372255)

  • 1. Entropy Stable DGSEM Schemes of Gauss Points Based on Subcell Limiting.
    Liu Y; Zhu H; Yan ZG; Jia F; Feng X
    Entropy (Basel); 2023 Jun; 25(6):. PubMed ID: 37372255
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy Stability Property of the CPR Method Based on Subcell Second-Order CNNW Limiting in Solving Conservation Laws.
    Liu R; Yan ZG; Zhu H; Jia F; Feng X
    Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of Discontinuous Galerkin Spectral Element Schemes for Wave Propagation when the Coefficient Matrices have Jumps.
    Kopriva DA; Gassner GJ; Nordström J
    J Sci Comput; 2021; 88(1):3. PubMed ID: 34776602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of numerical schemes for capturing shock waves in modeling proppant transport in fractures.
    Roostaei M; Nouri A; Fattahpour V; Chan D
    Pet Sci; 2017; 14(4):731-745. PubMed ID: 32010200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From
    Bolis A; Cantwell CD; Kirby RM; Sherwin SJ
    Int J Numer Methods Fluids; 2014 Jul; 75(8):591-607. PubMed ID: 25892840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A discontinuous Galerkin method to solve chromatographic models.
    Javeed S; Qamar S; Seidel-Morgenstern A; Warnecke G
    J Chromatogr A; 2011 Oct; 1218(40):7137-46. PubMed ID: 21890141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fourth Order Entropy Stable Scheme for Hyperbolic Conservation Laws.
    Cheng X
    Entropy (Basel); 2019 May; 21(5):. PubMed ID: 33267222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Space-time adaptive numerical methods for geophysical applications.
    Castro CE; Käser M; Toro EF
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4613-31. PubMed ID: 19840984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.
    Hesthaven JS; Warburton T
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of high-Mach-number inviscid flows using a third-order Runge-Kutta and fifth-order WENO-based finite-difference lattice Boltzmann method.
    Shirsat AU; Nayak SG; Patil DV
    Phys Rev E; 2022 Aug; 106(2-2):025314. PubMed ID: 36109898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An arbitrary high-order discontinuous Galerkin method with local time-stepping for linear acoustic wave propagation.
    Wang H; Cosnefroy M; Hornikx M
    J Acoust Soc Am; 2021 Jan; 149(1):569. PubMed ID: 33514145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A unified discontinuous Galerkin framework for time integration.
    Zhao S; Wei GW
    Math Methods Appl Sci; 2014 May; 37(7):1042-1071. PubMed ID: 25382889
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waves at a fluid-solid interface: Explicit versus implicit formulation of boundary conditions using a discontinuous Galerkin method.
    Shukla K; Carcione JM; Hesthaven JS; L'heureux E
    J Acoust Soc Am; 2020 May; 147(5):3136. PubMed ID: 32486768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of two-phase liquid-vapor flows using a high-order compact finite-difference lattice Boltzmann method.
    Hejranfar K; Ezzatneshan E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053305. PubMed ID: 26651814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multijunction organic photovoltaics with a broad spectral response.
    Macko JA; Lunt RR; Osedach TP; Brown PR; Barr MC; Gleason KK; Bulovic V
    Phys Chem Chem Phys; 2012 Nov; 14(42):14548-53. PubMed ID: 23014483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the SBP-SAT Stabilization for Finite Element Methods Part I: Linear Problems.
    Abgrall R; Nordström J; Öffner P; Tokareva S
    J Sci Comput; 2020; 85(2):43. PubMed ID: 33184528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MELEXIR: maximum entropy Legendre expanded image reconstruction. A fast and efficient method for the analysis of velocity map imaging or photoelectron imaging data.
    Dick B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19499-19512. PubMed ID: 31463493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.
    Botti L; Paliwal N; Conti P; Antiga L; Meng H
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3111. PubMed ID: 29858530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of Z-Weighted Function Based on Fifth-Order Nonlinear Multi-Order Weighted Method for Shock Capturing of Hyperbolic Conservation Laws.
    Bai J; Yan Z; Mao M; Ma Y; Jiang D
    Entropy (Basel); 2024 Apr; 26(4):. PubMed ID: 38667888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.