These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37372407)

  • 1. Plant Promoters: Their Identification, Characterization, and Role in Gene Regulation.
    Villao-Uzho L; Chávez-Navarrete T; Pacheco-Coello R; Sánchez-Timm E; Santos-Ordóñez E
    Genes (Basel); 2023 Jun; 14(6):. PubMed ID: 37372407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic promoters in planta.
    Dey N; Sarkar S; Acharya S; Maiti IB
    Planta; 2015 Nov; 242(5):1077-94. PubMed ID: 26250538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancer-promoter interference and its prevention in transgenic plants.
    Singer SD; Cox KD; Liu Z
    Plant Cell Rep; 2011 May; 30(5):723-31. PubMed ID: 21170713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly interactive nature of flower-specific enhancers and promoters, and its potential impact on tissue-specific expression and engineering of multiple genes or agronomic traits.
    Wen Z; Yang Y; Zhang J; Wang X; Singer S; Liu Z; Yang Y; Yan G; Liu Z
    Plant Biotechnol J; 2014 Sep; 12(7):951-62. PubMed ID: 24893677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An update and perspectives on the use of promoters in plant genetic engineering.
    Kummari D; Palakolanu SR; Kishor PBK; Bhatnagar-Mathur P; Singam P; Vadez V; Sharma KK
    J Biosci; 2020; 45():. PubMed ID: 33097676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives.
    Anwar A; Kim JK
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32295026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome editing for crop improvement: Challenges and opportunities.
    Abdallah NA; Prakash CS; McHughen AG
    GM Crops Food; 2015; 6(4):183-205. PubMed ID: 26930114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically modified (GM) crops: milestones and new advances in crop improvement.
    Kamthan A; Chaudhuri A; Kamthan M; Datta A
    Theor Appl Genet; 2016 Sep; 129(9):1639-55. PubMed ID: 27381849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current progress and challenges in crop genetic transformation.
    Anjanappa RB; Gruissem W
    J Plant Physiol; 2021 Jun; 261():153411. PubMed ID: 33872932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization and isolation of a T-DNA tagged banana promoter active during in vitro culture and low temperature stress.
    Santos E; Remy S; Thiry E; Windelinckx S; Swennen R; Sági L
    BMC Plant Biol; 2009 Jun; 9():77. PubMed ID: 19552803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A petal-specific InMYB1 promoter from Japanese morning glory: a useful tool for molecular breeding of floricultural crops.
    Azuma M; Morimoto R; Hirose M; Morita Y; Hoshino A; Iida S; Oshima Y; Mitsuda N; Ohme-Takagi M; Shiratake K
    Plant Biotechnol J; 2016 Jan; 14(1):354-63. PubMed ID: 25923400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically modified crops: current status and future prospects.
    Kumar K; Gambhir G; Dass A; Tripathi AK; Singh A; Jha AK; Yadava P; Choudhary M; Rakshit S
    Planta; 2020 Mar; 251(4):91. PubMed ID: 32236850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and functional characterization of three abiotic stress-inducible (Apx, Dhn and Hsc70) promoters from pearl millet (Pennisetum glaucum L.).
    Divya K; Kavi Kishor PB; Bhatnagar-Mathur P; Singam P; Sharma KK; Vadez V; Reddy PS
    Mol Biol Rep; 2019 Dec; 46(6):6039-6052. PubMed ID: 31468258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering plants with increased disease resistance: how are we going to express it?
    Gurr SJ; Rushton PJ
    Trends Biotechnol; 2005 Jun; 23(6):283-90. PubMed ID: 15922080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient chimeric plant promoters derived from plant infecting viral promoter sequences.
    Acharya S; Ranjan R; Pattanaik S; Maiti IB; Dey N
    Planta; 2014 Feb; 239(2):381-96. PubMed ID: 24178585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed-specific increased expression of 2S albumin promoter of sesame qualifies it as a useful genetic tool for fatty acid metabolic engineering and related transgenic intervention in sesame and other oil seed crops.
    Bhunia RK; Chakraborty A; Kaur R; Gayatri T; Bhattacharyya J; Basu A; Maiti MK; Sen SK
    Plant Mol Biol; 2014 Nov; 86(4-5):351-65. PubMed ID: 25139230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation, characterization, and evaluation of three Citrus sinensis-derived constitutive gene promoters.
    Erpen L; Tavano ECR; Harakava R; Dutt M; Grosser JW; Piedade SMS; Mendes BMJ; Mourão Filho FAA
    Plant Cell Rep; 2018 Aug; 37(8):1113-1125. PubMed ID: 29796947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.