BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 37372617)

  • 1. Phenolic Profiles, Antioxidant, and Hypoglycemic Activities of
    Zhang L; Wang Q; Zhao Y; Ge J; He D
    Foods; 2023 Jun; 12(12):. PubMed ID: 37372617
    [No Abstract]   [Full Text] [Related]  

  • 2. Rapid qualitative profiling and quantitative analysis of phenolics in Ribes meyeri leaves and their antioxidant and antidiabetic activities by HPLC-QTOF-MS/MS and UHPLC-MS/MS.
    Zhao Y; Lu H; Wang Q; Liu H; Shen H; Xu W; Ge J; He D
    J Sep Sci; 2021 Apr; 44(7):1404-1420. PubMed ID: 33464708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-aging effects of
    Gao J; Wu Y; He D; Zhu X; Li H; Liu H; Liu H
    Aging (Albany NY); 2020 Sep; 12(17):17738-17753. PubMed ID: 32920547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenolic composition and bioactivity of
    Burgos-Edwards A; Theoduloz C; Miño S; Ghosh D; Shulaev V; Ramírez C; Sánchez-Jardón L; Rozzi R; Schmeda-Hirschmann G
    Heliyon; 2024 Feb; 10(4):e25542. PubMed ID: 38380002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification and characterization of anthocyanins and non-anthocyanin phenolics from Australian native fruits and their antioxidant, antidiabetic, and anti-Alzheimer potential.
    Ali A; Cottrell JJ; Dunshea FR
    Food Res Int; 2022 Dec; 162(Pt B):111951. PubMed ID: 36461310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anthocyanin and other phenolic compounds in Ceylon gooseberry (Dovyalis hebecarpa) fruits.
    Bochi VC; Godoy HT; Giusti MM
    Food Chem; 2015 Jun; 176():234-43. PubMed ID: 25624229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qualitative and quantitative changes in polyphenol composition and bioactivity of Ribes magellanicum and R. punctatum after in vitro gastrointestinal digestion.
    Burgos-Edwards A; Jiménez-Aspee F; Thomas-Valdés S; Schmeda-Hirschmann G; Theoduloz C
    Food Chem; 2017 Dec; 237():1073-1082. PubMed ID: 28763953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antioxidant activity and phenolic profiles of the wild currant Ribes magellanicum from Chilean and Argentinean Patagonia.
    Jiménez-Aspee F; Thomas-Valdés S; Schulz A; Ladio A; Theoduloz C; Schmeda-Hirschmann G
    Food Sci Nutr; 2016 Jul; 4(4):595-610. PubMed ID: 27386109
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthocyanins profile, total phenolics and antioxidant activity of black currant ethanolic extracts as influenced by genotype and ethanol concentration.
    Nour V; Stampar F; Veberic R; Jakopic J
    Food Chem; 2013 Nov; 141(2):961-6. PubMed ID: 23790874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The anthocyanins in black currants regulate postprandial hyperglycaemia primarily by inhibiting α-glucosidase while other phenolics modulate salivary α-amylase, glucose uptake and sugar transporters.
    Barik SK; Russell WR; Moar KM; Cruickshank M; Scobbie L; Duncan G; Hoggard N
    J Nutr Biochem; 2020 Apr; 78():108325. PubMed ID: 31952012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of phenolic compounds, ascorbic acid and vitamin E to antioxidant activity of currant (Ribes L.) and gooseberry (Ribes uva-crispa L.) fruits.
    Orsavová J; Hlaváčová I; Mlček J; Snopek L; Mišurcová L
    Food Chem; 2019 Jun; 284():323-333. PubMed ID: 30744864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antioxidant capacities and anthocyanin characteristics of the black-red wild berries obtained in Northeast China.
    Feng C; Su S; Wang L; Wu J; Tang Z; Xu Y; Shu Q; Wang L
    Food Chem; 2016 Aug; 204():150-158. PubMed ID: 26988488
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Hu X; Chen Y; Dai J; Yao L; Wang L
    Antioxidants (Basel); 2022 Jul; 11(7):. PubMed ID: 35883880
    [No Abstract]   [Full Text] [Related]  

  • 14. Identification of phenolic compounds in fruits of Ribes stenocarpum Maxim. By UHPLC-QTOF/MS and their hypoglycemic effects in vitro and in vivo.
    Jiang S; Zhao X; Liu C; Dong Q; Mei L; Chen C; Shao Y; Tao Y; Yue H
    Food Chem; 2021 May; 344():128568. PubMed ID: 33246687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyphenol and Anthocyanin Composition and Activity of Highland Barley with Different Colors.
    Jin HM; Dang B; Zhang WG; Zheng WC; Yang XJ
    Molecules; 2022 May; 27(11):. PubMed ID: 35684349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and free-radical-scavenging properties of cyanidin 3-O-glycosides from the fruits of Ribes biebersteinii Berl.
    Delazar A; Khodaie L; Afshar J; Nahar L; Sarker SD
    Acta Pharm; 2010 Mar; 60(1):1-11. PubMed ID: 20228037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic Profiles, Antioxidant, and Inhibitory Activities of
    Sritalahareuthai V; Temviriyanukul P; On-Nom N; Charoenkiatkul S; Suttisansanee U
    Foods; 2020 Sep; 9(9):. PubMed ID: 32887386
    [No Abstract]   [Full Text] [Related]  

  • 18. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (
    Kim I; Lee J
    Antioxidants (Basel); 2020 Mar; 9(3):. PubMed ID: 32192116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antidiabetic potential of Catechu via assays for α-glucosidase, α-amylase, and glucose uptake in adipocytes.
    Zhang K; Chen XL; Zhao X; Ni JY; Wang HL; Han M; Zhang YM
    J Ethnopharmacol; 2022 Jun; 291():115118. PubMed ID: 35202712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colonic fermentation of polyphenols from Chilean currants (Ribes spp.) and its effect on antioxidant capacity and metabolic syndrome-associated enzymes.
    Burgos-Edwards A; Jiménez-Aspee F; Theoduloz C; Schmeda-Hirschmann G
    Food Chem; 2018 Aug; 258():144-155. PubMed ID: 29655716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.