BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37372930)

  • 1. Transcriptomic Analysis of Three Differentially Senescing Maize (
    Han X; Zhang D; Hao H; Luo Y; Zhu Z; Kuai B
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses.
    Li Y; Wang X; Li Y; Zhang Y; Gou Z; Qi X; Zhang J
    Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32756433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize (
    Xue M; Han X; Zhang L; Chen S
    Genes (Basel); 2024 Feb; 15(3):. PubMed ID: 38540348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Ren Q; Zhang J; Chen L
    Gene; 2019 Apr; 692():68-78. PubMed ID: 30641208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress.
    Shi J; Yan B; Lou X; Ma H; Ruan S
    BMC Plant Biol; 2017 Jan; 17(1):26. PubMed ID: 28122503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic and alternative splicing analyses provide insights into the roles of exogenous salicylic acid ameliorating waxy maize seedling growth under heat stress.
    Guo J; Wang Z; Qu L; Hu Y; Lu D
    BMC Plant Biol; 2022 Sep; 22(1):432. PubMed ID: 36076169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomic and weighted gene co-expression network analysis of tropic and temperate maize inbred lines recovering from heat stress.
    Long Y; Qin Q; Zhang J; Zhu Z; Liu Y; Gu L; Jiang H; Si W
    Plant Sci; 2023 Feb; 327():111538. PubMed ID: 36423743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ZmNF-YA1 Contributes to Maize Thermotolerance by Regulating Heat Shock Response.
    Yang Y; Li Z; Zhang J
    Int J Mol Sci; 2024 Jun; 25(11):. PubMed ID: 38892463
    [No Abstract]   [Full Text] [Related]  

  • 9. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.
    Wu L; Li M; Tian L; Wang S; Wu L; Ku L; Zhang J; Song X; Liu H; Chen Y
    PLoS One; 2017; 12(10):e0185838. PubMed ID: 28973044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis reveals important roles of nonadditive genes in maize hybrid An'nong 591 under heat stress.
    Zhao Y; Hu F; Zhang X; Wei Q; Dong J; Bo C; Cheng B; Ma Q
    BMC Plant Biol; 2019 Jun; 19(1):273. PubMed ID: 31234785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Association of the molecular regulation of ear leaf senescence/stress response and photosynthesis/metabolism with heterosis at the reproductive stage in maize.
    Song Y; Zhang Z; Tan X; Jiang Y; Gao J; Lin L; Wang Z; Ren J; Wang X; Qin L; Cheng W; Qi J; Kuai B
    Sci Rep; 2016 Jul; 6():29843. PubMed ID: 27435114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome response of maize (Zea mays L.) seedlings to heat stress.
    Li ZG; Ye XY
    Protoplasma; 2022 Mar; 259(2):357-369. PubMed ID: 34117937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptome Profiling of Maize (
    Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Dynamics of DNA methylation in the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.
    Qian Y; Hu W; Liao J; Zhang J; Ren Q
    Biochem Biophys Res Commun; 2019 May; 512(4):742-749. PubMed ID: 30926168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative transcriptomic and physiological analyses of contrasting hybrid cultivars ND476 and ZX978 identify important differentially expressed genes and pathways regulating drought stress tolerance in maize.
    Liu G; Zenda T; Liu S; Wang X; Jin H; Dong A; Yang Y; Duan H
    Genes Genomics; 2020 Aug; 42(8):937-955. PubMed ID: 32623576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissecting the Regulatory Network of Leaf Premature Senescence in Maize (
    Chai M; Guo Z; Shi X; Li Y; Tang J; Zhang Z
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31752425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated Transcriptomics and Metabolomics Analysis of Two Maize Hybrids (ZD309 and XY335) under Heat Stress at the Flowering Stage.
    Zhao P; Sun L; Zhang S; Jiao B; Wang J; Ma C
    Genes (Basel); 2024 Jan; 15(2):. PubMed ID: 38397179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-length transcriptome analysis of maize root tips reveals the molecular mechanism of cold stress during the seedling stage.
    Xuhui L; Weiwei C; Siqi L; Junteng F; Hang Z; Xiangbo Z; Yongwen Q
    BMC Plant Biol; 2022 Aug; 22(1):398. PubMed ID: 35963989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaf transcriptomic response mediated by cold stress in two maize inbred lines with contrasting tolerance levels.
    Yu T; Zhang J; Cao J; Cai Q; Li X; Sun Y; Li S; Li Y; Hu G; Cao S; Liu C; Wang G; Wang L; Duan Y
    Genomics; 2021 Mar; 113(2):782-794. PubMed ID: 33516847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dynamics of carbon and nitrogen balance during leaf senescence of maize seedlings induced by low nitrogen stress].
    Wang N; Shi ZK; Xu SY; Yin FR; Wang WJ; Feng WJ
    Ying Yong Sheng Tai Xue Bao; 2022 Apr; 33(4):1045-1054. PubMed ID: 35543058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.