BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37372986)

  • 1. Integrated Transcriptome and Metabolome Dynamic Analysis of Galls Induced by the Gall Mite
    Yang M; Li H; Qiao H; Guo K; Xu R; Wei H; Wei J; Liu S; Xu C
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37372986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Hormone response of
    Yang MK; Li JL; Liu S; Qiao HL; Guo K; Xu R; Chen J; Xu CQ
    Ying Yong Sheng Tai Xue Bao; 2020 Jul; 31(7):2307-2313. PubMed ID: 32715696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new method of gall mite management: application of artificial defoliation to control
    Li J; Liu S; Guo K; Qiao H; Xu R; Xu C; Chen J
    PeerJ; 2019; 7():e6503. PubMed ID: 30863674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Metabolomics analysis of Lycium barbarum leaves after Aceria pallida infestation].
    Yang MK; Liu S; Li JL; Guo K; Qiao HL; Xu R; Xu CQ; Chen J
    Zhongguo Zhong Yao Za Zhi; 2020 Jun; 45(12):2842-2846. PubMed ID: 32627458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Overwintering status and species identification of gall mite in major wolfberry production areas].
    Liu S; Yang MK; Li JL; Guo K; Qiao HL; Xu R; Xu CQ; Chen J
    Zhongguo Zhong Yao Za Zhi; 2019 Jun; 44(11):2208-2212. PubMed ID: 31359643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feeding-induced plant metabolite responses to a phoretic gall mite, its carrier psyllid and both, after detachment.
    Yang M; Li J; Qiao H; Guo K; Xu R; Wei H; Wei J; Liu S; Xu C
    Exp Appl Acarol; 2023 Nov; 91(3):381-403. PubMed ID: 37882995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytohormones and willow gall induction by a gall-inducing sawfly.
    Yamaguchi H; Tanaka H; Hasegawa M; Tokuda M; Asami T; Suzuki Y
    New Phytol; 2012 Oct; 196(2):586-595. PubMed ID: 22913630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit.
    Tooker JF; Helms AM
    J Chem Ecol; 2014 Jul; 40(7):742-53. PubMed ID: 25027764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant-mediated competition facilitates a phoretic association between a gall mite and a psyllid vector.
    Li J; Liu S; Guo K; Zhang F; Qiao H; Chen J; Yang M; Zhu X; Xu R; Xu C; Chen J
    Exp Appl Acarol; 2018 Nov; 76(3):325-337. PubMed ID: 30341476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gall wasp Leptocybe invasa (Hymenoptera: Eulophidae) stimulates different chemical and phytohormone responses in two Eucalyptus varieties that vary in susceptibility to galling.
    Li XQ; Liu YZ; Guo WF; Solanki MK; Yang ZD; Xiang Y; Ma ZC; Wen YG
    Tree Physiol; 2017 Sep; 37(9):1208-1217. PubMed ID: 28938058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative transcriptome analysis of galls from four different host plants suggests the molecular mechanism of gall development.
    Takeda S; Yoza M; Amano T; Ohshima I; Hirano T; Sato MH; Sakamoto T; Kimura S
    PLoS One; 2019; 14(10):e0223686. PubMed ID: 31647845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic dissection of an extended phenotype: Oak galling by a cynipid gall wasp.
    Hearn J; Blaxter M; Schönrogge K; Nieves-Aldrey JL; Pujade-Villar J; Huguet E; Drezen JM; Shorthouse JD; Stone GN
    PLoS Genet; 2019 Nov; 15(11):e1008398. PubMed ID: 31682601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic characterization of the saliva of the eriophyid mite, Aceria pongamiae Keifer1966 (Acari: Eriophyidae) and the bacterial endobiome of the galls induced on Pongamia pinnata (L.) Pierre (Fabaceae).
    Anand PP; Ramani N
    Naturwissenschaften; 2021 Jul; 108(4):33. PubMed ID: 34302542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome profile of cup-shaped galls in Litsea acuminata leaves.
    Shih TH; Lin SH; Huang MY; Sun CW; Yang CM
    PLoS One; 2018; 13(10):e0205265. PubMed ID: 30356295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular and Histologic Adaptation of Horned Gall Induced by the Aphid
    Lu Q; Chen X; Yang Z; Bashir NH; Liu J; Cui Y; Shao S; Chen MS; Chen H
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34068250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge.
    Tanaka Y; Okada K; Asami T; Suzuki Y
    Biosci Biotechnol Biochem; 2013; 77(9):1942-8. PubMed ID: 24018692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transcriptional landscape of insect galls: psyllid (Hemiptera) gall formation in Hawaiian Metrosideros polymorpha (Myrtaceae).
    Bailey S; Percy DM; Hefer CA; Cronk QC
    BMC Genomics; 2015 Nov; 16():943. PubMed ID: 26572921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of limited neoplastic growth on Pongamia pinnata (L.) (Fabaceae) leaf, induced by Aceria pongamiae (Acari: Eriophyidae).
    Anand PP; Ramani N
    BMC Plant Biol; 2021 Jan; 21(1):1. PubMed ID: 33386069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive significance of gall formation for a gall-inducing aphids on Japanese elm trees.
    Takei M; Yoshida S; Kawai T; Hasegawa M; Suzuki Y
    J Insect Physiol; 2015 Jan; 72():43-51. PubMed ID: 25437243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive Interactions between
    Wu P; Ge Y; He J; Haseeb M; Zhang R
    Insects; 2022 Jun; 13(7):. PubMed ID: 35886753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.