These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37373018)

  • 1. Development of Terminator-Promoter Bifunctional Elements for Application in
    Ni X; Liu Z; Guo J; Zhang G
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast Synthetic Terminators: Fine Regulation of Strength through Linker Sequences.
    Wang Z; Wei L; Sheng Y; Zhang G
    Chembiochem; 2019 Sep; 20(18):2383-2389. PubMed ID: 30974044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SAGA mediates transcription from the TATA-like element independently of Taf1p/TFIID but dependent on core promoter structures in Saccharomyces cerevisiae.
    Watanabe K; Kokubo T
    PLoS One; 2017; 12(11):e0188435. PubMed ID: 29176831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Terminators in Saccharomyces cerevisiae and an Exploration of Factors Affecting Their Strength.
    Wei L; Wang Z; Zhang G; Ye B
    Chembiochem; 2017 Dec; 18(24):2422-2427. PubMed ID: 29058813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae.
    Watanabe K; Yabe M; Kasahara K; Kokubo T
    PLoS One; 2015; 10(6):e0129357. PubMed ID: 26046838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Promoter elements determining weak expression of the GAL4 regulatory gene of Saccharomyces cerevisiae.
    Griggs DW; Johnston M
    Mol Cell Biol; 1993 Aug; 13(8):4999-5009. PubMed ID: 8393142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.
    Curran KA; Karim AS; Gupta A; Alper HS
    Metab Eng; 2013 Sep; 19():88-97. PubMed ID: 23856240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A synthetic promoter system for well-controlled protein expression with different carbon sources in Saccharomyces cerevisiae.
    Deng J; Wu Y; Zheng Z; Chen N; Luo X; Tang H; Keasling JD
    Microb Cell Fact; 2021 Oct; 20(1):202. PubMed ID: 34663323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. cis- and trans-acting regulatory elements of the yeast URA3 promoter.
    Roy A; Exinger F; Losson R
    Mol Cell Biol; 1990 Oct; 10(10):5257-70. PubMed ID: 2204810
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the INO2 regulatory gene of Saccharomyces cerevisiae is controlled by positive and negative promoter elements and an upstream open reading frame.
    Eiznhamer DA; Ashburner BP; Jackson JC; Gardenour KR; Lopes JM
    Mol Microbiol; 2001 Mar; 39(5):1395-405. PubMed ID: 11251853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Can terminators be used as insulators into yeast synthetic gene circuits?
    Song W; Li J; Liang Q; Marchisio MA
    J Biol Eng; 2016; 10():19. PubMed ID: 28018483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional activation by upstream activator sequences requires distinct interactions with downstream elements in the yeast TRP1 promoter.
    Mellor J; Midgely C; Kingsman AJ; Kingsman SM; Kim S
    Mol Gen Genet; 1991 Feb; 225(2):217-24. PubMed ID: 2005863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broad compatibility between yeast UAS elements and core promoters and identification of promoter elements that determine cofactor specificity.
    Schofield JA; Hahn S
    Cell Rep; 2023 Apr; 42(4):112387. PubMed ID: 37058407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upstream Activation Sequence Can Function as an Insulator for Chromosomal Regulation of Heterologous Pathways Against Position Effects in Saccharomyces cerevisiae.
    Su B; Yang F; Li A; Deng MR; Zhu H
    Appl Biochem Biotechnol; 2022 Apr; 194(4):1841-1849. PubMed ID: 35000122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering for production of beta-carotene and lycopene in Saccharomyces cerevisiae.
    Yamano S; Ishii T; Nakagawa M; Ikenaga H; Misawa N
    Biosci Biotechnol Biochem; 1994 Jun; 58(6):1112-4. PubMed ID: 7765036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel
    Feng X; Marchisio MA
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34071849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TATA-binding protein activates transcription when upstream of a GCN4-binding site in a novel yeast promoter.
    Brandl CJ; Martens JA; Liaw PC; Furlanetto AM; Wobbe CR
    J Biol Chem; 1992 Oct; 267(29):20943-52. PubMed ID: 1400410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A regulatory region responsible for proline-specific induction of the yeast PUT2 gene is adjacent to its TATA box.
    Siddiqui AH; Brandriss MC
    Mol Cell Biol; 1988 Nov; 8(11):4634-41. PubMed ID: 3062363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-component upstream activation sequence of the Saccharomyces cerevisiae glyceraldehyde-3-phosphate dehydrogenase gene promoter.
    Bitter GA; Chang KK; Egan KM
    Mol Gen Genet; 1991 Dec; 231(1):22-32. PubMed ID: 1753943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering yeast artificial core promoter with designated base motifs.
    Liu R; Liu L; Li X; Liu D; Yuan Y
    Microb Cell Fact; 2020 Feb; 19(1):38. PubMed ID: 32070349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.