These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37373146)
61. Metallic nanoparticles induced antibiotic resistance genes attenuation of leachate culturable microbiota: The combined roles of growth inhibition, ion dissolution and oxidative stress. Su Y; Wu D; Xia H; Zhang C; Shi J; Wilkinson KJ; Xie B Environ Int; 2019 Jul; 128():407-416. PubMed ID: 31078875 [TBL] [Abstract][Full Text] [Related]
62. Green synthesis of zinc oxide nanoparticles using Brassica oleracea var. botrytis leaf extract: Photocatalytic, antimicrobial and larvicidal activity. Manojkumar U; Kaliannan D; Srinivasan V; Balasubramanian B; Kamyab H; Mussa ZH; Palaniyappan J; Mesbah M; Chelliapan S; Palaninaicker S Chemosphere; 2023 May; 323():138263. PubMed ID: 36858116 [TBL] [Abstract][Full Text] [Related]
63. Changes in Serum Physiological and Biochemical Parameters of Male Swiss Albino Mice After Oral Administration of Metal Oxide Nanoparticles (ZnO, CuO, and ZnO+CuO). Kargin D Biol Trace Elem Res; 2021 Nov; 199(11):4218-4224. PubMed ID: 33403575 [TBL] [Abstract][Full Text] [Related]
64. Effect of tungsten doping on the structural, morphological and bactericidal properties of nanostructured CuO. Raba-Páez AM; D Malafatti JO; Parra-Vargas CA; Paris EC; Rincón-Joya M PLoS One; 2020; 15(9):e0239868. PubMed ID: 32986775 [TBL] [Abstract][Full Text] [Related]
65. Antimicrobial starch/poly(butylene adipate-co-terephthalate) nanocomposite films loaded with a combination of silver and zinc oxide nanoparticles for food packaging. Zhai X; Zhou S; Zhang R; Wang W; Hou H Int J Biol Macromol; 2022 May; 206():298-305. PubMed ID: 35240209 [TBL] [Abstract][Full Text] [Related]
66. Impediment to growth and yeast-to-hyphae transition in Padmavathi AR; P SM; Das A; Priya A; Sushmitha TJ; Pandian SK; Toleti SR Biofouling; 2020 Jan; 36(1):56-72. PubMed ID: 31997658 [TBL] [Abstract][Full Text] [Related]
67. Pesticidal activity of metal oxide nanoparticles on plant pathogenic isolates of Pythium. Zabrieski Z; Morrell E; Hortin J; Dimkpa C; McLean J; Britt D; Anderson A Ecotoxicology; 2015 Aug; 24(6):1305-14. PubMed ID: 26076749 [TBL] [Abstract][Full Text] [Related]
68. Molecular characterization of virulence and drug resistance genes-producing Escherichia coli isolated from chicken meat: Metal oxide nanoparticles as novel antibacterial agents. Ali SS; Sonbol FI; Sun J; Hussein MA; Hafez AE; Abdelkarim EA; Kornaros M; Ali A; Azab M Microb Pathog; 2020 Jun; 143():104164. PubMed ID: 32198092 [TBL] [Abstract][Full Text] [Related]
69. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Dadi R; Azouani R; Traore M; Mielcarek C; Kanaev A Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109968. PubMed ID: 31500003 [TBL] [Abstract][Full Text] [Related]
70. The application of antimicrobial photodynamic inactivation on methicillin-resistant S. aureus and ESBL-producing K. pneumoniae using porphyrin photosensitizer in combination with silver nanoparticles. Malá Z; Žárská L; Bajgar R; Bogdanová K; Kolář M; Panáček A; Binder S; Kolářová H Photodiagnosis Photodyn Ther; 2021 Mar; 33():102140. PubMed ID: 33307229 [TBL] [Abstract][Full Text] [Related]
71. Dual role of acidic diacetate sophorolipid as biostabilizer for ZnO nanoparticle synthesis and biofunctionalizing agent against Salmonella enterica and Candida albicans. Basak G; Das D; Das N J Microbiol Biotechnol; 2014 Jan; 24(1):87-96. PubMed ID: 24150496 [TBL] [Abstract][Full Text] [Related]
72. Effect of Mg(2+), Ca(2+), Sr(2+) and Ba(2+) metal ions on the antifungal activity of ZnO nanoparticles tested against Candida albicans. Haja Hameed AS; Karthikeyan C; Senthil Kumar V; Kumaresan S; Sasikumar S Mater Sci Eng C Mater Biol Appl; 2015; 52():171-7. PubMed ID: 25953555 [TBL] [Abstract][Full Text] [Related]
73. Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Rad SS; Sani AM; Mohseni S Microb Pathog; 2019 Jun; 131():239-245. PubMed ID: 31002961 [TBL] [Abstract][Full Text] [Related]
74. Use of nanoparticulate zinc oxide as intracanal medication in endodontics: pH and antimicrobial activity. Guerreiro-Tanomaru JM; Pereira KF; Nascimento CA; Bernardi MI; Tanomaru-Filho M Acta Odontol Latinoam; 2013; 26(3):144-8. PubMed ID: 25335366 [TBL] [Abstract][Full Text] [Related]
75. Green Synthesis of Copper Oxide Nanoparticles from the Leaves of Ali SG; Haseen U; Jalal M; Khan RA; Alsalme A; Ahmad H; Khan HM Molecules; 2023 Nov; 28(22):. PubMed ID: 38005229 [TBL] [Abstract][Full Text] [Related]
77. Rhamnolipid-Coated Iron Oxide Nanoparticles as a Novel Multitarget Candidate against Major Foodborne E. coli Serotypes and Methicillin-Resistant S. aureus. Sharaf M; Sewid AH; Hamouda HI; Elharrif MG; El-Demerdash AS; Alharthi A; Hashim N; Hamad AA; Selim S; Alkhalifah DHM; Hozzein WN; Abdalla M; Saber T Microbiol Spectr; 2022 Aug; 10(4):e0025022. PubMed ID: 35852338 [TBL] [Abstract][Full Text] [Related]
78. Superior antibacterial activity of ZnO-CuO nanocomposite synthesized by a chemical Co-precipitation approach. Jan T; Azmat S; Mansoor Q; Waqas HM; Adil M; Ilyas SZ; Ahmad I; Ismail M Microb Pathog; 2019 Sep; 134():103579. PubMed ID: 31175970 [TBL] [Abstract][Full Text] [Related]
79. Synthesis, Characterization and Evaluation of Antimicrobial, Antioxidant & Anticancer Activities of Copper Doped Zinc Oxide Nanoparticles. Rishikesan S; Basha MAM Acta Chim Slov; 2020 Mar; 67(1):235-245. PubMed ID: 33558933 [TBL] [Abstract][Full Text] [Related]
80. Nettle-Leaf Extract Derived ZnO/CuO Nanoparticle-Biopolymer-Based Antioxidant and Antimicrobial Nanocomposite Packaging Films and Their Impact on Extending the Post-Harvest Shelf Life of Guava Fruit. Kalia A; Kaur M; Shami A; Jawandha SK; Alghuthaymi MA; Thakur A; Abd-Elsalam KA Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33562547 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]