These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 37373173)
1. Apoptosis Related Human Wharton's Jelly-Derived Stem Cells Differentiation into Osteoblasts, Chondrocytes, Adipocytes and Neural-like Cells-Complete Transcriptomic Assays. Stefańska K; Nemcova L; Blatkiewicz M; Pieńkowski W; Ruciński M; Zabel M; Mozdziak P; Podhorska-Okołów M; Dzięgiel P; Kempisty B Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373173 [TBL] [Abstract][Full Text] [Related]
2. Expression Profile of New Marker Genes Involved in Differentiation of Human Wharton's Jelly-Derived Mesenchymal Stem Cells into Chondrocytes, Osteoblasts, Adipocytes and Neural-like Cells. Stefańska K; Nemcova L; Blatkiewicz M; Żok A; Kaczmarek M; Pieńkowski W; Mozdziak P; Piotrowska-Kempisty H; Kempisty B Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629120 [TBL] [Abstract][Full Text] [Related]
3. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration. Pu L; Meng M; Wu J; Zhang J; Hou Z; Gao H; Xu H; Liu B; Tang W; Jiang L; Li Y Stem Cell Res Ther; 2017 Mar; 8(1):72. PubMed ID: 28320452 [TBL] [Abstract][Full Text] [Related]
4. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord. Bharti D; Shivakumar SB; Park JK; Ullah I; Subbarao RB; Park JS; Lee SL; Park BW; Rho GJ Cell Tissue Res; 2018 Apr; 372(1):51-65. PubMed ID: 29204746 [TBL] [Abstract][Full Text] [Related]
5. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]
6. The effect of fibroblast growth factor on distinct differentiation potential of cord blood-derived unrestricted somatic stem cells and Wharton's jelly-derived mesenchymal stem/stromal cells. Lee S; Park BJ; Kim JY; Jekarl D; Choi HY; Lee SY; Kim M; Kim Y; Park MS Cytotherapy; 2015 Dec; 17(12):1723-31. PubMed ID: 26589753 [TBL] [Abstract][Full Text] [Related]
7. Isolation and characterization of Wharton's jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system. Cardoso TC; Ferrari HF; Garcia AF; Novais JB; Silva-Frade C; Ferrarezi MC; Andrade AL; Gameiro R BMC Biotechnol; 2012 May; 12():18. PubMed ID: 22559872 [TBL] [Abstract][Full Text] [Related]
8. Pluripotent gene expression in mesenchymal stem cells from human umbilical cord Wharton's jelly and their differentiation potential to neural-like cells. Tantrawatpan C; Manochantr S; Kheolamai P; U-Pratya Y; Supokawej A; Issaragrisil S J Med Assoc Thai; 2013 Sep; 96(9):1208-17. PubMed ID: 24163998 [TBL] [Abstract][Full Text] [Related]
9. DMSO- and Serum-Free Cryopreservation of Wharton's Jelly Tissue Isolated From Human Umbilical Cord. Shivakumar SB; Bharti D; Subbarao RB; Jang SJ; Park JS; Ullah I; Park JK; Byun JH; Park BW; Rho GJ J Cell Biochem; 2016 Oct; 117(10):2397-412. PubMed ID: 27038129 [TBL] [Abstract][Full Text] [Related]
10. Human Wharton's jelly mesenchymal stem cells: properties, isolation and clinical applications. Borys-Wójcik S; Brązert M; Jankowski M; Ożegowska K; Chermuła B; Piotrowska-Kempisty H; Bukowska D; Antosik P; Pawelczyk L; Nowicki M; Jeseta M; Kempisty B J Biol Regul Homeost Agents; 2019 Jan-Feb,; 33(1):119-123. PubMed ID: 30729769 [TBL] [Abstract][Full Text] [Related]
11. Wharton's Jelly Derived-Mesenchymal Stem Cells: Isolation and Characterization. Ranjbaran H; Abediankenari S; Mohammadi M; Jafari N; Khalilian A; Rahmani Z; Momeninezhad Amiri M; Ebrahimi P Acta Med Iran; 2018 Jan; 56(1):28-33. PubMed ID: 29436792 [TBL] [Abstract][Full Text] [Related]
12. Isolation method and xeno-free culture conditions influence multipotent differentiation capacity of human Wharton's jelly-derived mesenchymal stem cells. Corotchi MC; Popa MA; Remes A; Sima LE; Gussi I; Lupu Plesu M Stem Cell Res Ther; 2013 Jul; 4(4):81. PubMed ID: 23845279 [TBL] [Abstract][Full Text] [Related]
13. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord. Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911 [TBL] [Abstract][Full Text] [Related]
14. Human Wharton's jelly mesenchymal stem cells maintain the expression of key immunomodulatory molecules when subjected to osteogenic, adipogenic and chondrogenic differentiation in vitro: new perspectives for cellular therapy. La Rocca G; Lo Iacono M; Corsello T; Corrao S; Farina F; Anzalone R Curr Stem Cell Res Ther; 2013 Jan; 8(1):100-13. PubMed ID: 23317435 [TBL] [Abstract][Full Text] [Related]
15. In vitro chondrogenesis of Wharton's jelly mesenchymal stem cells in hyaluronic acid-based hydrogels. Aleksander-Konert E; Paduszyński P; Zajdel A; Dzierżewicz Z; Wilczok A Cell Mol Biol Lett; 2016; 21():11. PubMed ID: 28536614 [TBL] [Abstract][Full Text] [Related]
16. Circ6401, a novel circular RNA, is implicated in repair of the damaged endometrium by Wharton's jelly-derived mesenchymal stem cells through regulation of the miR-29b-1-5p/RAP1B axis. Shi Q; Sun B; Wang D; Zhu Y; Zhao X; Yang X; Zhang Y Stem Cell Res Ther; 2020 Dec; 11(1):520. PubMed ID: 33261656 [TBL] [Abstract][Full Text] [Related]
17. Differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells into endometrial cells. Shi Q; Gao J; Jiang Y; Sun B; Lu W; Su M; Xu Y; Yang X; Zhang Y Stem Cell Res Ther; 2017 Nov; 8(1):246. PubMed ID: 29096715 [TBL] [Abstract][Full Text] [Related]
18. [Expression of Galectins in umbilical cord mesenchymal stem cells]. Li CH; Sun L; Zhang YJ; Zhao JX; Yao ZQ; Xu N; Liu R; Liu XY Beijing Da Xue Xue Bao Yi Xue Ban; 2013 Jun; 45(3):452-7. PubMed ID: 23774927 [TBL] [Abstract][Full Text] [Related]
19. The Molecular Regulatory Mechanism in Multipotency and Differentiation of Wharton's Jelly Stem Cells. Ma L; He X; Wu Q Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37629090 [TBL] [Abstract][Full Text] [Related]
20. Scaffold-free 3D culturing enhance pluripotency, immunomodulatory factors, and differentiation potential of Wharton's jelly-mesenchymal stem cells. Thakur G; Bok EY; Kim SB; Jo CH; Oh SJ; Baek JC; Park JE; Kang YH; Lee SL; Kumar R; Rho GJ Eur J Cell Biol; 2022; 101(3):151245. PubMed ID: 35667339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]