These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 37373246)

  • 21. Molecular Mechanism of Cynodon dactylon Phytosterols Targeting MAPK3 and PARP1 to Combat Epithelial Ovarian Cancer: A Multifaceted Computational Approach.
    Balkrishna A; Sharma Y; Dabas S; Arya V; Dabas A
    Cell Biochem Biophys; 2024 Sep; 82(3):2625-2650. PubMed ID: 38961033
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The histone methyltransferase SMYD2 methylates PARP1 and promotes poly(ADP-ribosyl)ation activity in cancer cells.
    Piao L; Kang D; Suzuki T; Masuda A; Dohmae N; Nakamura Y; Hamamoto R
    Neoplasia; 2014 Mar; 16(3):257-64, 264.e2. PubMed ID: 24726141
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PBX1-SIRT1 Positive Feedback Loop Attenuates ROS-Mediated HF-MSC Senescence and Apoptosis.
    Wang Y; Sui Y; Niu Y; Liu D; Xu Q; Liu F; Zuo K; Liu M; Sun W; Wang Z; Liu Z; Zou F; Shi J; Liu X; Liu J
    Stem Cell Rev Rep; 2023 Feb; 19(2):443-454. PubMed ID: 35962175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD).
    Yaku K; Okabe K; Gulshan M; Takatsu K; Okamoto H; Nakagawa T
    Sci Rep; 2019 Sep; 9(1):13102. PubMed ID: 31511627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A ribose-functionalized NAD
    Zhang XN; Cheng Q; Chen J; Lam AT; Lu Y; Dai Z; Pei H; Evdokimov NM; Louie SG; Zhang Y
    Nat Commun; 2019 Sep; 10(1):4196. PubMed ID: 31519936
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites.
    Altmeyer M; Messner S; Hassa PO; Fey M; Hottiger MO
    Nucleic Acids Res; 2009 Jun; 37(11):3723-38. PubMed ID: 19372272
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compartment-Specific Poly-ADP-Ribose Formation as a Biosensor for Subcellular NAD Pools.
    VanLinden MR; Niere M; Nikiforov AA; Ziegler M; Dölle C
    Methods Mol Biol; 2017; 1608():45-56. PubMed ID: 28695502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High mobility group box-1 release from H
    Ye TJ; Lu YL; Yan XF; Hu XD; Wang XL
    World J Gastroenterol; 2019 Sep; 25(36):5434-5450. PubMed ID: 31576091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(ADP-ribose) polymerase 1-sirtuin 1 functional interplay regulates LPS-mediated high mobility group box 1 secretion.
    Walko TD; Di Caro V; Piganelli J; Billiar TR; Clark RS; Aneja RK
    Mol Med; 2015 Mar; 20(1):612-24. PubMed ID: 25517228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human PARP1 Facilitates Transcription through a Nucleosome and Histone Displacement by Pol II In Vitro.
    Kotova EY; Hsieh FK; Chang HW; Maluchenko NV; Langelier MF; Pascal JM; Luse DS; Feofanov AV; Studitsky VM
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35806109
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NAD
    Saville KM; Clark J; Wilk A; Rogers GD; Andrews JF; Koczor CA; Sobol RW
    DNA Repair (Amst); 2020 Sep; 93():102930. PubMed ID: 33087267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SIRT1 promotes cell survival under stress by deacetylation-dependent deactivation of poly(ADP-ribose) polymerase 1.
    Rajamohan SB; Pillai VB; Gupta M; Sundaresan NR; Birukov KG; Samant S; Hottiger MO; Gupta MP
    Mol Cell Biol; 2009 Aug; 29(15):4116-29. PubMed ID: 19470756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Defining the NSD2 interactome: PARP1 PARylation reduces NSD2 histone methyltransferase activity and impedes chromatin binding.
    Huang X; LeDuc RD; Fornelli L; Schunter AJ; Bennett RL; Kelleher NL; Licht JD
    J Biol Chem; 2019 Aug; 294(33):12459-12471. PubMed ID: 31248990
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Poly(ADP-ribose) polymerase 1 at the crossroad of metabolic stress and inflammation in aging.
    Altmeyer M; Hottiger MO
    Aging (Albany NY); 2009 May; 1(5):458-69. PubMed ID: 20157531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Caspase inhibition augments Dichlorvos-induced dopaminergic neuronal cell death by increasing ROS production and PARP1 activation.
    Wani WY; Sunkaria A; Sharma DR; Kandimalla RJ; Kaushal A; Gerace E; Chiarugi A; Gill KD
    Neuroscience; 2014 Jan; 258():1-15. PubMed ID: 24231740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PARP1 protects from benzo[a]pyrene diol epoxide-induced replication stress and mutagenicity.
    Fischer JMF; Zubel T; Jander K; Fix J; Trussina IREA; Gebhard D; Bergemann J; Bürkle A; Mangerich A
    Arch Toxicol; 2018 Mar; 92(3):1323-1340. PubMed ID: 29196784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of poly(ADP-Ribose) polymerase 1 functions by post-translational modifications.
    Piao L; Fujioka K; Nakakido M; Hamamoto R
    Front Biosci (Landmark Ed); 2018 Jan; 23(1):13-26. PubMed ID: 28930534
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conserved NAD
    Li J; Bonkowski MS; Moniot S; Zhang D; Hubbard BP; Ling AJ; Rajman LA; Qin B; Lou Z; Gorbunova V; Aravind L; Steegborn C; Sinclair DA
    Science; 2017 Mar; 355(6331):1312-1317. PubMed ID: 28336669
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The NAD+/PARP1/SIRT1 Axis in Aging.
    Mendelsohn AR; Larrick JW
    Rejuvenation Res; 2017 Jun; 20(3):244-247. PubMed ID: 28537485
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR spectroscopy.
    Krüger A; Bürkle A; Hauser K; Mangerich A
    Nat Commun; 2020 May; 11(1):2174. PubMed ID: 32358582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.