BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 37373453)

  • 1. DNA Glycosylases Define the Outcome of Endogenous Base Modifications.
    Lirussi L; Nilsen HL
    Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular response to endogenous DNA damage: DNA base modifications in gene expression regulation.
    Bordin DL; Lirussi L; Nilsen H
    DNA Repair (Amst); 2021 Mar; 99():103051. PubMed ID: 33540225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base J, found in nuclear DNA of Trypanosoma brucei, is not a target for DNA glycosylases.
    Ulbert S; Eide L; Seeberg E; Borst P
    DNA Repair (Amst); 2004 Feb; 3(2):145-54. PubMed ID: 14706348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Germline ablation of SMUG1 DNA glycosylase causes loss of 5-hydroxymethyluracil- and UNG-backup uracil-excision activities and increases cancer predisposition of Ung-/-Msh2-/- mice.
    Kemmerich K; Dingler FA; Rada C; Neuberger MS
    Nucleic Acids Res; 2012 Jul; 40(13):6016-25. PubMed ID: 22447450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical and enzymatic modifications of 5-methylcytosine at the intersection of DNA damage, repair, and epigenetic reprogramming.
    Baljinnyam T; Sowers ML; Hsu CW; Conrad JW; Herring JL; Hackfeld LC; Sowers LC
    PLoS One; 2022; 17(8):e0273509. PubMed ID: 36037209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA glycosylases: in DNA repair and beyond.
    Jacobs AL; Schär P
    Chromosoma; 2012 Feb; 121(1):1-20. PubMed ID: 22048164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in understanding the coupling of DNA base modifying enzymes to processes involving base excision repair.
    Wyatt MD
    Adv Cancer Res; 2013; 119():63-106. PubMed ID: 23870509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1.
    Wibley JE; Waters TR; Haushalter K; Verdine GL; Pearl LH
    Mol Cell; 2003 Jun; 11(6):1647-59. PubMed ID: 12820976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of Base Excision "Repair" Enzymes in Erasing Epigenetic Marks from DNA.
    Drohat AC; Coey CT
    Chem Rev; 2016 Oct; 116(20):12711-12729. PubMed ID: 27501078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The intricate structural chemistry of base excision repair machinery: implications for DNA damage recognition, removal, and repair.
    Hitomi K; Iwai S; Tainer JA
    DNA Repair (Amst); 2007 Apr; 6(4):410-28. PubMed ID: 17208522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Base Excision Repair in Chromatin and the Requirement for Chromatin Remodelling.
    Madders ECET; Parsons JL
    Adv Exp Med Biol; 2020; 1241():59-75. PubMed ID: 32383116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aberrant base excision repair pathway of oxidatively damaged DNA: Implications for degenerative diseases.
    Talhaoui I; Matkarimov BT; Tchenio T; Zharkov DO; Saparbaev MK
    Free Radic Biol Med; 2017 Jun; 107():266-277. PubMed ID: 27890638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase.
    Matsubara M; Tanaka T; Terato H; Ohmae E; Izumi S; Katayanagi K; Ide H
    Nucleic Acids Res; 2004; 32(17):5291-302. PubMed ID: 15466595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions.
    Masaoka A; Matsubara M; Hasegawa R; Tanaka T; Kurisu S; Terato H; Ohyama Y; Karino N; Matsuda A; Ide H
    Biochemistry; 2003 May; 42(17):5003-12. PubMed ID: 12718543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA modifications repaired by base excision repair are epigenetic.
    Moore SP; Toomire KJ; Strauss PR
    DNA Repair (Amst); 2013 Dec; 12(12):1152-8. PubMed ID: 24216087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms.
    Pettersen HS; Sundheim O; Gilljam KM; Slupphaug G; Krokan HE; Kavli B
    Nucleic Acids Res; 2007; 35(12):3879-92. PubMed ID: 17537817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA demethylation pathways: Additional players and regulators.
    Bochtler M; Kolano A; Xu GL
    Bioessays; 2017 Jan; 39(1):1-13. PubMed ID: 27859411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active DNA demethylation in post-mitotic neurons: a reason for optimism.
    Gavin DP; Chase KA; Sharma RP
    Neuropharmacology; 2013 Dec; 75():233-45. PubMed ID: 23958448
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging Roles of DNA Glycosylases and the Base Excision Repair Pathway.
    Mullins EA; Rodriguez AA; Bradley NP; Eichman BF
    Trends Biochem Sci; 2019 Sep; 44(9):765-781. PubMed ID: 31078398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.