These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 37374477)
1. Study on the Powder-Spreading Process of Walnut Shell/Co-PES Biomass Composite Powder in Additive Manufacturing. Yu Y; Ma T; Wang S; Jiang M; Gao S; Guo Y; Jiang T; Doumbia BS; Yan B; Shen S Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374477 [TBL] [Abstract][Full Text] [Related]
2. Discrete Element Simulation of the Effect of Roller-Spreading Parameters on Powder-Bed Density in Additive Manufacturing. Zhang J; Tan Y; Bao T; Xu Y; Xiao X; Jiang S Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429173 [TBL] [Abstract][Full Text] [Related]
3. Discrete Element Method Analysis of the Spreading Mechanism and Its Influence on Powder Bed Characteristics in Additive Manufacturing. Lampitella V; Trofa M; Astarita A; D'Avino G Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33918200 [TBL] [Abstract][Full Text] [Related]
4. Powder Spreading Mechanism in Laser Powder Bed Fusion Additive Manufacturing: Experiments and Computational Approach Using Discrete Element Method. Habiba U; Hebert RJ Materials (Basel); 2023 Apr; 16(7):. PubMed ID: 37049118 [TBL] [Abstract][Full Text] [Related]
5. The Role of Roller Rotation Pattern in the Spreading Process of Polymer/Short-Fiber Composite Powder in Selective Laser Sintering. Cheng T; Chen H; Wei Q Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745919 [TBL] [Abstract][Full Text] [Related]
6. Investigation of the Effects of Roller Spreading Parameters on Powder Bed Quality in Selective Laser Sintering. Xiao X; Jin Y; Tan Y; Gao W; Jiang S; Liu S; Chen M Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683145 [TBL] [Abstract][Full Text] [Related]
7. Research on an Online Monitoring Device for the Powder Laying Process of Laser Powder Bed Fusion. Wei B; Liu J; Li J; Zhao Z; Liu Y; Yang G; Liu L; Chang H Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38258216 [TBL] [Abstract][Full Text] [Related]
8. Revealing particle-scale powder spreading dynamics in powder-bed-based additive manufacturing process by high-speed x-ray imaging. Escano LI; Parab ND; Xiong L; Guo Q; Zhao C; Fezzaa K; Everhart W; Sun T; Chen L Sci Rep; 2018 Oct; 8(1):15079. PubMed ID: 30305675 [TBL] [Abstract][Full Text] [Related]
9. Impact of Particle Size on Performance of Selective Laser Sintering Walnut Shell/Co-PES Powder. Yu Y; Jiang M; Wang S; Guo Y; Jiang T; Zeng W; Zhuang Y Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477643 [TBL] [Abstract][Full Text] [Related]
10. A modular testbed for mechanized spreading of powder layers for additive manufacturing. Oropeza D; Roberts R; Hart AJ Rev Sci Instrum; 2021 Jan; 92(1):015114. PubMed ID: 33514203 [TBL] [Abstract][Full Text] [Related]
11. Material Evaluation and Dynamic Powder Deposition Modeling of PEEK/CF Composite for Laser Powder Bed Fusion Process. Li J; Peng F; Li H; Ru Z; Fu J; Zhu W Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447508 [TBL] [Abstract][Full Text] [Related]
12. An instrument for in situ characterization of powder spreading dynamics in powder-bed-based additive manufacturing processes. Escano LI; Parab ND; Guo Q; Qu M; Fezzaa K; Everhart W; Sun T; Chen L Rev Sci Instrum; 2022 Apr; 93(4):043707. PubMed ID: 35489882 [TBL] [Abstract][Full Text] [Related]
13. A Comprehensive Approach to Powder Feedstock Characterization for Powder Bed Fusion Additive Manufacturing: A Case Study on AlSi7Mg. Muñiz-Lerma JA; Nommeots-Nomm A; Waters KE; Brochu M Materials (Basel); 2018 Nov; 11(12):. PubMed ID: 30486411 [TBL] [Abstract][Full Text] [Related]
14. A Numerical Study on the Mesoscopic Characteristics of Ti-6Al-4V by Selective Laser Melting. Ao X; Liu J; Xia H; Yang Y Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454547 [TBL] [Abstract][Full Text] [Related]
15. Roughly Spherical: Tailored PMMA-SiO Canziani H; Bever F; Sommereyns A; Schmidt M; Vogel N ACS Appl Mater Interfaces; 2021 Jun; 13(21):25334-25345. PubMed ID: 34019394 [TBL] [Abstract][Full Text] [Related]
16. Predictive Simulation of Process Windows for Powder Bed Fusion Additive Manufacturing: Influence of the Powder Bulk Density. Rausch AM; Küng VE; Pobel C; Markl M; Körner C Materials (Basel); 2017 Sep; 10(10):. PubMed ID: 28937633 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning Applied to Defect Detection in Powder Spreading Process of Magnetic Material Additive Manufacturing. Chen HY; Lin CC; Horng MH; Chang LK; Hsu JH; Chang TW; Hung JC; Lee RM; Tsai MC Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013797 [TBL] [Abstract][Full Text] [Related]
18. Spreading Behavior of Non-Spherical Particles with Reconstructed Shapes Using Discrete Element Method in Additive Manufacturing. Zhang T; Chen D; Yang H; Zhao W; Wang Y; Zhou H Polymers (Basel); 2024 Apr; 16(9):. PubMed ID: 38732648 [TBL] [Abstract][Full Text] [Related]
19. Characterization of Composite Powder Feedstock from Powder Bed Fusion Additive Manufacturing Perspective. Fereiduni E; Ghasemi A; Elbestawi M Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31703412 [TBL] [Abstract][Full Text] [Related]
20. Vibratory Powder Feeding for Powder Bed Additive Manufacturing Using Water and Gas Atomized Metal Powders. Sinclair CW; Edinger R; Sparling W; Molavi-Kakhki A; Labrecque C Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]