These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37374477)

  • 21. Effects of Particle Size Distribution with Efficient Packing on Powder Flowability and Selective Laser Melting Process.
    Young Z; Qu M; Coday MM; Guo Q; Hojjatzadeh SMH; Escano LI; Fezzaa K; Chen L
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160651
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bottom-Up Design of Composite Supraparticles for Powder-Based Additive Manufacturing.
    Canziani H; Chiera S; Schuffenhauer T; Kopp SP; Metzger F; Bück A; Schmidt M; Vogel N
    Small; 2020 Jul; 16(30):e2002076. PubMed ID: 32578351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A New Method for Automatic Detection of Defects in Selective Laser Melting Based on Machine Vision.
    Lin Z; Lai Y; Pan T; Zhang W; Zheng J; Ge X; Liu Y
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of Powder Deposition on Powder Bed and Specimen Properties.
    Beitz S; Uerlich R; Bokelmann T; Diener A; Vietor T; Kwade A
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30669274
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Combined Experimental-Numerical Method to Evaluate Powder Thermal Properties in Laser Powder Bed Fusion.
    Cheng B; Lane B; Whiting J; Chou K
    J Manuf Sci Eng; 2018; 140():. PubMed ID: 30996585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Data-driven characterization of thermal models for powder-bed-fusion additive manufacturing.
    Yan W; Lu Y; Jones K; Yang Z; Fox J; Witherell P; Wagner G; Liu WK
    Addit Manuf; 2020; 36():. PubMed ID: 34123733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Residual Stress Formation Mechanisms in Laser Powder Bed Fusion-A Numerical Evaluation.
    Kaess M; Werz M; Weihe S
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Simulation Study on Sieving as a Powder Deposition Method in Powder Bed Fusion Processes.
    Avrampos P; Vosniakos GC
    Materials (Basel); 2024 Jul; 17(14):. PubMed ID: 39063674
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of material attributes and process parameters on the powder bed uniformity during a low-dose dosator capsule filling process.
    Stranzinger S; Faulhammer E; Calzolari V; Biserni S; Dreu R; Šibanc R; Paudel A; Khinast JG
    Int J Pharm; 2017 Jan; 516(1-2):9-20. PubMed ID: 27826028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manufacturing Aluminum/Multiwalled Carbon Nanotube Composites via Laser Powder Bed Fusion.
    Lee ER; Shin SE; Takata N; Kobashi M; Kato M
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influencing the Size and Shape of High-Energy Ball Milled Particle Reinforced Aluminum Alloy Powder.
    Trautmann M; Ahmad H; Wagner G
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591360
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multimetal Research in Powder Bed Fusion: A Review.
    Yao L; Ramesh A; Xiao Z; Chen Y; Zhuang Q
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles.
    Nandy J; Sahoo S; Yedla N; Sarangi H
    J Mol Model; 2020 May; 26(6):125. PubMed ID: 32388665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructural Control Strategy Based on Optimizing Laser Powder Bed Fusion for Different Hastelloy X Powder Size.
    Jang JE; Kim W; Sung JH; Kim YJ; Park SH; Kim DH
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Standard method for microCT-based additive manufacturing quality control 4: Metal powder analysis.
    du Plessis A; Sperling P; Beerlink A; du Preez WB; le Roux SG
    MethodsX; 2018; 5():1336-1345. PubMed ID: 30406023
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Process Phenomena and Material Properties in Selective Laser Sintering of Polymers: A Review.
    Lupone F; Padovano E; Casamento F; Badini C
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of lubrication on density distributions of roller compacted ribbons.
    Miguélez-Morán AM; Wu CY; Seville JP
    Int J Pharm; 2008 Oct; 362(1-2):52-9. PubMed ID: 18602976
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 316L Stainless Steel Powders for Additive Manufacturing: Relationships of Powder Rheology, Size, Size Distribution to Part Properties.
    Groarke R; Danilenkoff C; Karam S; McCarthy E; Michel B; Mussatto A; Sloane J; O' Neill A; Raghavendra R; Brabazon D
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33291734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional discrete element simulation of the runaway vehicle deceleration process on the arrester bed of truck escape ramps.
    Qin P; Wu F; Wu D; Zhang S; Huang D
    Sci Prog; 2020; 103(3):36850420940890. PubMed ID: 32660356
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on the Characteristics of Walnut Shell/Co-PES/Co-PA Powder Produced by Selective Laser Sintering.
    Yu Y; Guo Y; Jiang T; Li J; Jiang K; Zhang H; Zhuang Y
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29751667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.