BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 37374631)

  • 21. Size-Controlled Intercalation-to-Conversion Transition in Lithiation of Transition-Metal Chalcogenides-NbSe3.
    Luo L; Zhao B; Xiang B; Wang CM
    ACS Nano; 2016 Jan; 10(1):1249-55. PubMed ID: 26593677
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Emerging carbon-based flexible anodes for potassium-ion batteries: Progress and opportunities.
    Li W; Yang Z; Zuo J; Wang J; Li X
    Front Chem; 2022; 10():1002540. PubMed ID: 36157035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Silver boosts ultra-long cycle life for metal sulfide lithium-ion battery anodes: Taking AgSbS
    Ho SF; Yang YC; Tuan HY
    J Colloid Interface Sci; 2022 Sep; 621():416-430. PubMed ID: 35483175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust Biomass-Derived Carbon Frameworks as High-Performance Anodes in Potassium-Ion Batteries.
    Chen J; Chen G; Zhao S; Feng J; Wang R; Parkin IP; He G
    Small; 2023 Feb; 19(7):e2206588. PubMed ID: 36470658
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-Pot Synthesis of High-Performance Tin Chalcogenides/C Anodes for Li-Ion Batteries.
    Liu X; Najam T; Yasin G; Kumar M; Wang M
    ACS Omega; 2021 Jul; 6(27):17391-17399. PubMed ID: 34278125
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible FeS@Fe
    Zhang Y; Chang S; Zhang D; Zhang S; Han L; Ye L; Pang R; Shang Y; Cao A
    Nanotechnology; 2021 Apr; 32(28):. PubMed ID: 33761495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Advances of Transition Metal Chalcogenides as Cathode Materials for Aqueous Zinc-Ion Batteries.
    Liu Y; Wu X
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Progress of Hard Carbon as an Anode Material in Sodium-Ion Batteries.
    Tan S; Yang H; Zhang Z; Xu X; Xu Y; Zhou J; Zhou X; Pan Z; Rao X; Gu Y; Wang Z; Wu Y; Liu X; Zhang Y
    Molecules; 2023 Mar; 28(7):. PubMed ID: 37049897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TiO
    Paul S; Rahman MA; Sharif SB; Kim JH; Siddiqui SE; Hossain MAM
    Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745373
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid.
    Yang C; Fu K; Zhang Y; Hitz E; Hu L
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28741318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoporous Composites of CoO
    Lu D; Yuan C; Yu M; Yang Y; Wang C; Guan R; Bian X
    ACS Omega; 2020 Sep; 5(34):21488-21496. PubMed ID: 32905499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using Mixed Salt Electrolytes to Stabilize Silicon Anodes for Lithium-Ion Batteries via in Situ Formation of Li-M-Si Ternaries (M = Mg, Zn, Al, Ca).
    Han B; Liao C; Dogan F; Trask SE; Lapidus SH; Vaughey JT; Key B
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):29780-29790. PubMed ID: 31318201
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Peapod-Like Carbon-Encapsulated Cobalt Chalcogenide Nanowires as Cycle-Stable and High-Rate Materials for Sodium-Ion Anodes.
    Wu C; Jiang Y; Kopold P; van Aken PA; Maier J; Yu Y
    Adv Mater; 2016 Sep; 28(33):7276-83. PubMed ID: 27276583
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances and Challenges in Metal Sulfides/Selenides for Next-Generation Rechargeable Sodium-Ion Batteries.
    Hu Z; Liu Q; Chou SL; Dou SX
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28643429
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Se
    Lin WL; Zhong HY; Huang YE; Lu X; Zhao Y; Zhang JX; Du KZ; Wu XH
    Nanotechnology; 2021 Oct; 32(50):. PubMed ID: 34479214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries.
    Du W; Liu J; Zeb A; Lin X
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37652-37666. PubMed ID: 35960813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interface Heteroatom-doping: Emerging Solutions to Silicon-based Anodes.
    Zhang F; Luo W; Yang J
    Chem Asian J; 2020 May; 15(9):1394-1404. PubMed ID: 32153101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hierarchical and Heterogeneous Porosity Construction and Nitrogen Doping Enabling Flexible Carbon Nanofiber Anodes with High Performance for Lithium-Ion Batteries.
    Liu J; Liu Y; Wang J; Wang X; Li X; Liu J; Nan D; Dong J
    Materials (Basel); 2022 Jun; 15(13):. PubMed ID: 35806515
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Review of Carbon-Based Materials for Safe Lithium Metal Anodes.
    Liu Y; Li X; Fan L; Li S; Maleki Kheimeh Sari H; Qin J
    Front Chem; 2019; 7():721. PubMed ID: 31750291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of Hollow Transition Metal (Fe, Co, Ni) Oxide Nanoparticles on Graphene Sheets through Kirkendall Effect as Anodes for High-Performance Lithium-Ion Batteries.
    Yu X; Qu B; Zhao Y; Li C; Chen Y; Sun C; Gao P; Zhu C
    Chemistry; 2016 Jan; 22(5):1638-45. PubMed ID: 26502895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.