These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37374650)

  • 1. Fracture Toughness and Fatigue Crack Growth Analyses on a Biomedical Ti-27Nb Alloy under Constant Amplitude Loading Using Extended Finite Element Modelling.
    Abdellah MY; Alharthi H
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of Fatigue Crack Growth in Biomedical Alloy Ti-27Nb.
    Amjad M; Badshah S; Rafique AF; Adil Khattak M; Khan RU; Abdullah Harasani WI
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32429420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of an interface failure model to predict fatigue crack growth in an implanted metallic femoral stem.
    Chen J; Browne M; Taylor M; Gregson PJ
    Comput Methods Programs Biomed; 2004 Mar; 73(3):249-56. PubMed ID: 14980406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Finite Element Model for Simulating Crack Growth in the Presence of Holes.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive Finite Element Modeling of Linear Elastic Fatigue Crack Growth.
    Alshoaibi AM; Bashiri AH
    Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fracture toughness of titanium-cement interfaces: effects of fibers and loading angles.
    Khandaker M; Utsaha KC; Morris T
    Int J Nanomedicine; 2014; 9():1689-97. PubMed ID: 24729704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue Crack Growth Behavior and Fracture Toughness of EH36 TMCP Steel.
    Zhu Q; Zhang P; Peng X; Yan L; Li G
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials.
    Kolken HMA; Garcia AF; Plessis AD; Meynen A; Rans C; Scheys L; Mirzaali MJ; Zadpoor AA
    Acta Biomater; 2022 Jan; 138():398-409. PubMed ID: 34763109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Numerical Analysis of Fatigue Crack Growth Path and Life Predictions for Linear Elastic Material.
    Alshoaibi AM; Fageehi YA
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation.
    Shiraiwa T; Briffod F; Enoki M
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Bond-Line Thickness on Fatigue Crack Growth of Structural Acrylic Adhesive Joints.
    Sekiguchi Y; Sato C
    Materials (Basel); 2021 Mar; 14(7):. PubMed ID: 33807416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subject-specific FE models of the human femur predict fracture path and bone strength under single-leg-stance loading.
    Gustafsson A; Tognini M; Bengtsson F; Gasser TC; Isaksson H; Grassi L
    J Mech Behav Biomed Mater; 2021 Jan; 113():104118. PubMed ID: 33125949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fatigue-crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects.
    Robertson SW; Ritchie RO
    Biomaterials; 2007 Feb; 28(4):700-9. PubMed ID: 17034845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.
    Bechtle S; Fett T; Rizzi G; Habelitz S; Schneider GA
    J Mech Behav Biomed Mater; 2010 May; 3(4):303-12. PubMed ID: 20346898
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropic mode-dependent damage of cortical bone using the extended finite element method (XFEM).
    Feerick EM; Liu XC; McGarry P
    J Mech Behav Biomed Mater; 2013 Apr; 20():77-89. PubMed ID: 23455165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical study of dehydration induced fracture toughness degradation in human cortical bone.
    Shin M; Martens PJ; Siegmund T; Kruzic JJ; Gludovatz B
    J Mech Behav Biomed Mater; 2024 May; 153():106468. PubMed ID: 38493561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue crack propagation and fracture toughness of cortical bone are radiation dose-dependent.
    Crocker DB; Hoffman I; Carter JLW; Akkus O; Rimnac CM
    J Orthop Res; 2023 Apr; 41(4):823-833. PubMed ID: 35949192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.