BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 37374691)

  • 21. Batch Fabrication of Flexible Strain Sensors with High Linearity and Low Hysteresis for Health Monitoring and Motion Detection.
    Liu B; Lan B; Shi L; Cheng Y; Sun J; Wang R
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 38953185
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality.
    Ke K; Sang Z; Manas-Zloczower I
    Nanoscale Adv; 2019 Jun; 1(6):2337-2347. PubMed ID: 36131959
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultraconformable Capacitive Strain Sensor Utilizing Network Structure of Single-Walled Carbon Nanotubes for Wireless Body Sensing.
    Okada K; Horii T; Yamaguchi Y; Son K; Hosoya N; Maeda S; Fujie T
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10427-10438. PubMed ID: 38375854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wearable, Ultrawide-Range, and Bending-Insensitive Pressure Sensor Based on Carbon Nanotube Network-Coated Porous Elastomer Sponges for Human Interface and Healthcare Devices.
    Kim S; Amjadi M; Lee TI; Jeong Y; Kwon D; Kim MS; Kim K; Kim TS; Oh YS; Park I
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23639-23648. PubMed ID: 31180635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors.
    Sang Z; Ke K; Manas-Zloczower I
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36483-36492. PubMed ID: 30280558
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flexible tactile sensors with interlocking serrated structures based on stretchable multiwalled carbon nanotube/silver nanowire/silicone rubber composites.
    Feng J; Ao H; Cao P; Yang T; Xing B
    RSC Adv; 2024 Apr; 14(20):13934-13943. PubMed ID: 38686300
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conductive and elastic bottlebrush elastomers for ultrasoft electronics.
    Xu P; Wang S; Lin A; Min HK; Zhou Z; Dou W; Sun Y; Huang X; Tran H; Liu X
    Nat Commun; 2023 Feb; 14(1):623. PubMed ID: 36739447
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-stretchable, super-hydrophobic and high-conductive composite for wearable strain sensors with high sensitivity.
    Li S; Xu R; Wang J; Yang Y; Fu Q; Pan C
    J Colloid Interface Sci; 2022 Jul; 617():372-382. PubMed ID: 35279572
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes.
    Lee J; Pyo S; Kwon DS; Jo E; Kim W; Kim J
    Small; 2019 Mar; 15(12):e1805120. PubMed ID: 30748123
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly Elastic, Sensitive, Stretchable, and Skin-Inspired Conductive Sodium Alginate/Polyacrylamide/Gallium Composite Hydrogel with Toughness as a Flexible Strain Sensor.
    Cao Q; Shu Z; Zhang T; Ji W; Chen J; Wei Y
    Biomacromolecules; 2022 Jun; 23(6):2603-2613. PubMed ID: 35617102
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stretchable and sensitive sensor based on carbon nanotubes/polymer composite with serpentine shapes via molding technique.
    Fu X; Al-Jumaily AM; Ramos M; Meshkinzar A; Huang X
    J Biomater Sci Polym Ed; 2019 Sep; 30(13):1227-1241. PubMed ID: 31154936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Flexible Strain Sensor Based on the Porous Structure of a Carbon Black/Carbon Nanotube Conducting Network for Human Motion Detection.
    Zhang P; Chen Y; Li Y; Zhang Y; Zhang J; Huang L
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Tension/Pressure Integrated Resistive Sensor Comprising of a PDMS-LC-MWCNT Composite.
    Luo M; Zhang Y; Luo Y; Lu J
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577282
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wearable strain sensor based on highly conductive carbon nanotube/polyurethane composite fibers.
    Zhuang Z; Cheng N; Zhang L; Liu L; Zhao J; Yu H
    Nanotechnology; 2020 May; 31(20):205701. PubMed ID: 31978930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine Learning-Enabled Environmentally Adaptable Skin-Electronic Sensor for Human Gesture Recognition.
    Song Y; Nguyen TH; Lee D; Kim J
    ACS Appl Mater Interfaces; 2024 Feb; 16(7):9551-9560. PubMed ID: 38331574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly stretchable and ultrathin nanopaper composites for epidermal strain sensors.
    Sun J; Zhao Y; Yang Z; Shen J; Cabrera E; Lertola MJ; Yang W; Zhang D; Benatar A; Castro JM; Wu D; Lee LJ
    Nanotechnology; 2018 Aug; 29(35):355304. PubMed ID: 29897348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Dispersed, Adhesive Carbon Nanotube Ink for Strain and Pressure Sensors.
    Duan Q; Lan B; Lv Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1973-1982. PubMed ID: 34978177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor.
    Sun H; Bu Y; Liu H; Wang J; Yang W; Li Q; Guo Z; Liu C; Shen C
    Sci Bull (Beijing); 2022 Aug; 67(16):1669-1678. PubMed ID: 36546046
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lightweight, compressible and electrically conductive polyurethane sponges coated with synergistic multiwalled carbon nanotubes and graphene for piezoresistive sensors.
    Ma Z; Wei A; Ma J; Shao L; Jiang H; Dong D; Ji Z; Wang Q; Kang S
    Nanoscale; 2018 Apr; 10(15):7116-7126. PubMed ID: 29616263
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.