BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37374694)

  • 21. Enhancing the nonreciprocal Goos-Hänchen shift by the Fano resonance of coupled gyromagnetic chains at normal incidence.
    Ma H; Wu RX
    Opt Express; 2022 Dec; 30(26):46031-46039. PubMed ID: 36558567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantum-well enhancement of the Goos-Hänchen shift for p-polarized beams in a two-prism configuration.
    Broe J; Keller O
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jun; 19(6):1212-22. PubMed ID: 12049360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure.
    Tang T; Qin J; Xie J; Deng L; Bi L
    Opt Express; 2014 Nov; 22(22):27042-55. PubMed ID: 25401854
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of chemical vapor with high sensitivity by using the symmetrical metal-cladding waveguide-enhanced Goos-Hänchen shift.
    Nie Y; Li Y; Wu Z; Wang X; Yuan W; Sang M
    Opt Express; 2014 Apr; 22(8):8943-8. PubMed ID: 24787783
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Angular Goos-Hänchen Shift Sensor Using a Gold Film Enhanced by Surface Plasmon Resonance.
    Olaya CM; Hayazawa N; Hermosa N; Tanaka T
    J Phys Chem A; 2021 Jan; 125(1):451-458. PubMed ID: 33350831
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nearly three orders of magnitude enhancement of Goos-Hanchen shift by exciting Bloch surface wave.
    Wan Y; Zheng Z; Kong W; Zhao X; Liu Y; Bian Y; Liu J
    Opt Express; 2012 Apr; 20(8):8998-9003. PubMed ID: 22513610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multifunctional Hyperbolic Nanogroove Metasurface for Submolecular Detection.
    Jiang L; Zeng S; Xu Z; Ouyang Q; Zhang DH; Chong PHJ; Coquet P; He S; Yong KT
    Small; 2017 Aug; 13(30):. PubMed ID: 28597602
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct experimental observation of giant Goos-Hänchen shifts from bandgap-enhanced total internal reflection.
    Wan Y; Zheng Z; Kong W; Liu Y; Lu Z; Bian Y
    Opt Lett; 2011 Sep; 36(18):3539-41. PubMed ID: 21931383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Goos-Hänchen shift in a defective Pell quasiperiodic photonic crystal with monolayer MoS
    Yang X; Liao Z; Chu Z; Zhu X; Da H
    Appl Opt; 2023 Aug; 62(22):5861-5866. PubMed ID: 37706934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene-assisted resonant transmission and enhanced Goos-Hänchen shift in a frustrated total internal reflection configuration.
    Chen Y; Ban Y; Zhu QB; Chen X
    Opt Lett; 2016 Oct; 41(19):4468-4471. PubMed ID: 27749857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phase Interrogation Sensor Based on All-Dielectric BIC Metasurface.
    Liu Z; Guo T; Tan Q; Hu Z; Sun Y; Fan H; Zhang Z; Jin Y; He S
    Nano Lett; 2023 Nov; 23(22):10441-10448. PubMed ID: 37818981
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Goos-Hänchen shift of the reflected wave through an anisotropic metamaterial containing metal/dielectric nanocomposites.
    Huang Y; Zhao B; Gao L
    J Opt Soc Am A Opt Image Sci Vis; 2012 Jul; 29(7):1436-44. PubMed ID: 22751412
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical temperature sensing based on the Goos-Hänchen effect.
    Chen CW; Lin WC; Liao LS; Lin ZH; Chiang HP; Leung PT; Sijercic E; Tse WS
    Appl Opt; 2007 Aug; 46(22):5347-51. PubMed ID: 17676150
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energy flux and Goos-Hänchen shift in frustrated total internal reflection.
    Chen X; Lu XJ; Zhao PL; Zhu QB
    Opt Lett; 2012 May; 37(9):1526-8. PubMed ID: 22555726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface phonon resonance enhanced Goos-Hänchen shift and its sensing application in the mid-infrared region.
    Zhang J; Jiang B; Song Y; Xu Y
    Opt Express; 2021 Oct; 29(21):32973-32982. PubMed ID: 34809118
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Goos-Hänchen shifts of partially coherent light fields.
    Wang LG; Zhu SY; Zubairy MS
    Phys Rev Lett; 2013 Nov; 111(22):223901. PubMed ID: 24329448
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interferometric method to measure the Goos-Hänchen shift.
    Prajapati C; Ranganathan D; Joseph J
    J Opt Soc Am A Opt Image Sci Vis; 2013 Apr; 30(4):741-8. PubMed ID: 23595336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Giant Goos-Hänchen shifts in non-Hermitian dielectric multilayers incorporated with graphene.
    Zhao D; Ke S; Liu Q; Wang B; Lu P
    Opt Express; 2018 Feb; 26(3):2817-2828. PubMed ID: 29401817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic switching between bound states in the continuum (BIC) and quasi-BIC based on a Dirac semimetal terahertz metasurface.
    Gao J; Liu H; Zhang M; Liu M; Zhang H; Zhang Y
    Phys Chem Chem Phys; 2022 Oct; 24(41):25571-25579. PubMed ID: 36254691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Observation of the Goos-Hänchen shift with neutrons.
    de Haan VO; Plomp J; Rekveldt TM; Kraan WH; van Well AA; Dalgliesh RM; Langridge S
    Phys Rev Lett; 2010 Jan; 104(1):010401. PubMed ID: 20366352
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.