These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37374708)

  • 1. Exploring the Potential of Flow-Induced Vibration Energy Harvesting Using a Corrugated Hyperstructure Bluff Body.
    Yuan Y; Wang H; Yang C; Sun H; Tang Y; Zhang Z
    Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Design and Experiment of a Spring-Coupling Electromagnetic Galloping Energy Harvester.
    Xiong L; Gao S; Jin L; Guo S; Sun Y; Liu F
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing the Performance of Piezoelectric Wind Energy Harvester Using Curve-Shaped Attachments on the Bluff Body.
    Poudel P; Sharma S; Ansari MNM; Vaish R; Kumar R; Ibrahim SM; Thomas P; Bowen C
    Glob Chall; 2023 Apr; 7(4):2100140. PubMed ID: 37020619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Piezoelectric and Electromagnetic Hybrid Galloping Energy Harvester with the Magnet Embedded in the Bluff Body.
    Li X; Bi C; Li Z; Liu B; Wang T; Zhang S
    Micromachines (Basel); 2021 May; 12(6):. PubMed ID: 34071414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Omnidirectional Wind Energy Harvester with a Cylindrical Piezoelectric Composite Cantilever.
    Xin M; Jiang X; Xu C; Yang J; Lu C
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ceramic-Based Piezoelectric Material for Energy Harvesting Using Hybrid Excitation.
    Ambrożkiewicz B; Czyż Z; Karpiński P; Stączek P; Litak G; Grabowski Ł
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research and Design of Energy-Harvesting System Based on Macro Fiber Composite Cantilever Beam Applied in Low-Frequency and Low-Speed Water Flow.
    Huang R; Zhou J; Shen J; Tian J; Zhou J; Chen W
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Karman Vortex Creation Using Cylinder for Flutter Energy Harvester Device.
    Atrah AB; Ab-Rahman MS; Salleh H; Nuawi MZ; Mohd Nor MJ; Jamaludin NB
    Micromachines (Basel); 2017 Jul; 8(7):. PubMed ID: 30400418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wind Tunnel Study of the Flow-Induced Vibrations of a Cylindrical Piezoelectric Transducer.
    Salem S; Fraňa K
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591154
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid Flow to Electricity: Capturing Flow-Induced Vibrations with Micro-Electromechanical-System-Based Piezoelectric Energy Harvester.
    Kang JG; Kim H; Shin S; Kim BS
    Micromachines (Basel); 2024 Apr; 15(5):. PubMed ID: 38793153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptivity of a leaf-inspired wind energy harvester with respect to wind speed and direction.
    Sabzpoushan S; Woias P
    Bioinspir Biomim; 2024 May; 19(4):. PubMed ID: 38701828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Triboelectric-Electromagnetic Hybrid Wind-Energy Harvester with a Low Startup Wind Speed in Urban Self-Powered Sensing.
    Li G; Cui J; Liu T; Zheng Y; Hao C; Hao X; Xue C
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harvesting Energy from Bridge Vibration by Piezoelectric Structure with Magnets Tailoring Potential Energy.
    Zhou Z; Zhang H; Qin W; Zhu P; Wang P; Du W
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel energy harvester based on dual vibrating mechanisms with self-actuation.
    Hou Y; He L; Liu X; Wang S; Tian X; Yu B; Cheng G
    Rev Sci Instrum; 2023 May; 94(5):. PubMed ID: 37125857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Output Power of a Cantilever-Based Flapping Airflow Energy Harvester Using External Mechanical Interventions.
    Wang L; Zhu D
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30925668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vortex-induced vibration wind energy harvesting by piezoelectric MEMS device in formation.
    Lee YJ; Qi Y; Zhou G; Lua KB
    Sci Rep; 2019 Dec; 9(1):20404. PubMed ID: 31892701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A compound cantilever beam piezoelectric harvester based on wind energy excitation.
    Zhang Z; He L; Hu R; Hu D; Zhou J; Cheng G
    Rev Sci Instrum; 2022 Aug; 93(8):085003. PubMed ID: 36050068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Critical Wind Speed of a Resonant Cavity Piezoelectric Energy Harvester Driven by Driving Wind Pressure.
    Li X; Li Z; Liu Q; Shan X
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31805751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive and Robust Operation with Active Fuzzy Harvester under Nonstationary and Random Disturbance Conditions.
    Hara Y; Otsuka K; Makihara K
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.