These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37374793)

  • 1. Precision Motion Control of a Piezoelectric Actuator via a Modified Preisach Hysteresis Model and Two-Degree-of-Freedom H-Infinity Robust Control.
    Baziyad AG; Ahmad I; Salamah YB
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensation of Hysteresis on Piezoelectric Actuators Based on Tripartite PI Model.
    An D; Li H; Xu Y; Zhang L
    Micromachines (Basel); 2018 Jan; 9(2):. PubMed ID: 30393320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracking Control of a Magnetic Shape Memory Actuator Using an Inverse Preisach Model with Modified Fuzzy Sliding Mode Control.
    Lin JH; Chiang MH
    Sensors (Basel); 2016 Aug; 16(9):. PubMed ID: 27571081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Dynamic Hysteresis Model and Nonlinear Control System for a Structure-Integrated Piezoelectric Sensor-Actuator.
    Shan X; Song H; Cao H; Zhang L; Zhao X; Fan J
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33401582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hysteresis Characteristics and MPI Compensation of Two-Dimensional Piezoelectric Positioning Stage.
    Wang W; Zhang J; Xu M; Chen G
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultra-precise tracking control of piezoelectric actuators via a fuzzy hysteresis model.
    Li P; Yan F; Ge C; Zhang M
    Rev Sci Instrum; 2012 Aug; 83(8):085114. PubMed ID: 22938339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-speed tracking control of piezoelectric actuators using an ellipse-based hysteresis model.
    Gu G; Zhu L
    Rev Sci Instrum; 2010 Aug; 81(8):085104. PubMed ID: 20815625
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Preisach Model Parameters Based on an Improved Particle Swarm Optimization Method for Piezoelectric Actuators in Micro-Manufacturing Stages.
    Yang L; Ding B; Liao W; Li Y
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling and compensation of hysteresis in piezoelectric actuators.
    Yu Z; Wu Y; Fang Z; Sun H
    Heliyon; 2020 May; 6(5):e03999. PubMed ID: 32509984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A modified Prandtl-Ishlinskii model for modeling asymmetric hysteresis of piezoelectric actuators.
    Jiang H; Ji H; Qiu J; Chen Y
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1200-10. PubMed ID: 20442032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural Network Self-Tuning Control for a Piezoelectric Actuator.
    Li W; Zhang C; Gao W; Zhou M
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and Compensation of Dynamic Hysteresis with Force-Voltage Coupling for Piezoelectric Actuators.
    Wang W; Wang J; Wang R; Chen Z; Han F; Lu K; Wang C; Xu Z; Ju B
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SVD-based Preisach hysteresis identification and composite control of piezo actuators.
    Liu L; Tan KK; Chen SL; Huang S; Lee TH
    ISA Trans; 2012 May; 51(3):430-8. PubMed ID: 22284264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a three-degree-of-freedom piezoelectric actuator.
    Wei F; Wang X; Dong J; Guo K; Sui Y
    Rev Sci Instrum; 2023 Feb; 94(2):025001. PubMed ID: 36859020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bidirectional Drive with Inhibited Hysteresis for Piezoelectric Actuators.
    Huang W; Lian J; An D; Chen M; Lei Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Positioning Error Analysis and Control of a Piezo-Driven 6-DOF Micro-Positioner.
    Lin C; Zheng S; Li P; Shen Z; Wang S
    Micromachines (Basel); 2019 Aug; 10(8):. PubMed ID: 31426503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Bandwidth Hysteresis Compensation of Piezoelectric Actuators via Multilayer Feedforward Neural Network Based Inverse Hysteresis Modeling.
    Qin Y; Zhang Y; Duan H; Han J
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and control of a novel X-Y parallel piezoelectric-actuator driven nanopositioner.
    Liu P; Yan P; Zhang Z; Leng T
    ISA Trans; 2015 May; 56():145-54. PubMed ID: 25467308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation of Hysteresis in the Piezoelectric Nanopositioning Stage under Reciprocating Linear Voltage Based on a Mark-Segmented PI Model.
    An D; Yang Y; Xu Y; Shao M; Shi J; Yue G
    Micromachines (Basel); 2019 Dec; 11(1):. PubMed ID: 31861513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new open-loop driving method of piezoelectric actuator for periodic reference inputs.
    Ru C; Sun L
    Ultrasonics; 2006 Dec; 44 Suppl 1():e633-7. PubMed ID: 16806369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.