These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 37374801)

  • 41. Adhesion behaviors of water droplets on bioinspired superhydrophobic surfaces.
    Xu P; Zhang Y; Li L; Lin Z; Zhu B; Chen W; Li G; Liu H; Xiao K; Xiong Y; Yang S; Lei Y; Xue L
    Bioinspir Biomim; 2022 Jun; 17(4):. PubMed ID: 35561670
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nature-Inspired Superhydrophobic Coating Materials: Drawing Inspiration from Nature for Enhanced Functionality.
    Barthwal S; Uniyal S; Barthwal S
    Micromachines (Basel); 2024 Mar; 15(3):. PubMed ID: 38542636
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Mimicking from Rose Petal to Lotus Leaf: Biomimetic Multiscale Hierarchical Particles with Tunable Water Adhesion.
    Chen C; Liu M; Zhang L; Hou Y; Yu M; Fu S
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):7431-7440. PubMed ID: 30699291
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanochemical robust, magnetic-driven, superhydrophobic 3D porous materials for contaminated oil recovery.
    Liu L; Pan Y; Bhushan B; Zhao X
    J Colloid Interface Sci; 2019 Mar; 538():25-33. PubMed ID: 30496893
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Constructing a Dual-Function Surface by Microcasting and Nanospraying for Efficient Drag Reduction and Potential Antifouling Capabilities.
    Qin L; Hafezi M; Yang H; Dong G; Zhang Y
    Micromachines (Basel); 2019 Jul; 10(7):. PubMed ID: 31340477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fabrication of Transferable and Micro/Nanostructured Superhydrophobic Surfaces Using Demolding and iCVD Processes.
    Tian W; Li C; Liu K; Ma F; Chu K; Tang X; Wang Z; Yue S; Qu S
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2368-2375. PubMed ID: 36574499
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Simple and Affordable Way To Achieve Polymeric Superhydrophobic Surfaces with Biomimetic Hierarchical Roughness.
    Sun J; Li H; Huang Y; Zheng X; Liu Y; Zhuang J; Wu D
    ACS Omega; 2019 Feb; 4(2):2750-2757. PubMed ID: 31459509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Magnetic-Responsive Superhydrophobic Surface of Magnetorheological Elastomers Mimicking from Lotus Leaves to Rose Petals.
    Chen S; Zhu M; Zhang Y; Dong S; Wang X
    Langmuir; 2021 Feb; 37(7):2312-2321. PubMed ID: 33544610
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.
    Wang P; Zhao T; Bian R; Wang G; Liu H
    ACS Nano; 2017 Dec; 11(12):12385-12391. PubMed ID: 29140678
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes.
    Bhushan B; Jung YC; Niemietz A; Koch K
    Langmuir; 2009 Feb; 25(3):1659-66. PubMed ID: 19132938
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Fabrication of Transparent and Microstructured Superhydrophobic Substrates Using Additive Manufacturing.
    Aldhaleai A; Tsai PA
    Langmuir; 2021 Jan; 37(1):348-356. PubMed ID: 33377783
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Recent progress in beetle-inspired superhydrophilic-superhydrophobic micropatterned water-collection materials.
    Chen Z; Zhang Z
    Water Sci Technol; 2020 Jul; 82(2):207-226. PubMed ID: 32941164
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Large-Scale Fabrication of Graded Convex Structure for Superhydrophobic Coating Inspired by Nature.
    Wang Y; Huang JT
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329632
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application.
    Guo Q; Ma J; Yin T; Jin H; Zheng J; Gao H
    Molecules; 2024 May; 29(9):. PubMed ID: 38731589
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces.
    González Lazo MA; Katrantzis I; Dalle Vacche S; Karasu F; Leterrier Y
    Materials (Basel); 2016 Aug; 9(9):. PubMed ID: 28773860
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Corrosion Resistance of ZnO Nanorod Superhydrophobic Coatings with Rose Petal Effect or Lotus Leaf Effect.
    Lai DL; Kong G; Li XC; Che CS
    J Nanosci Nanotechnol; 2019 Jul; 19(7):3919-3928. PubMed ID: 30764951
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Advances in the Research of Photo, Electrical, and Magnetic Responsive Smart Superhydrophobic Materials: Synthesis and Potential Applications.
    Wang Z; Qu G; Ren Y; Chen X; Wang J; Lu P; Cheng M; Chu X; Yuan Y
    Chem Asian J; 2023 Nov; 18(21):e202300680. PubMed ID: 37712452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.