BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 37374834)

  • 1. How Practical Are Fiber Supercapacitors for Wearable Energy Storage Applications?
    Teymoory P; Zhao J; Shen C
    Micromachines (Basel); 2023 Jun; 14(6):. PubMed ID: 37374834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smart Electronic Textile-Based Wearable Supercapacitors.
    Islam MR; Afroj S; Novoselov KS; Karim N
    Adv Sci (Weinh); 2022 Nov; 9(31):e2203856. PubMed ID: 36192164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic Fiber Supercapacitors for Wearable Energy Storage.
    Qin S; Seyedin S; Zhang J; Wang Z; Yang F; Liu Y; Chen J; Razal JM
    Macromol Rapid Commun; 2018 Jul; 39(13):e1800103. PubMed ID: 29774612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers.
    Zhao Z; Xia K; Hou Y; Zhang Q; Ye Z; Lu J
    Chem Soc Rev; 2021 Nov; 50(22):12702-12743. PubMed ID: 34643198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latest Advances in Flexible Symmetric Supercapacitors: From Material Engineering to Wearable Applications.
    Lu C; Chen X
    Acc Chem Res; 2020 Aug; 53(8):1468-1477. PubMed ID: 32658447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin Coaxial Fiber Supercapacitors Achieving High Energy and Power Densities.
    Shen C; Xie Y; Sanghadasa M; Tang Y; Lu L; Lin L
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39391-39398. PubMed ID: 29035032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Flexible Wearable Supercapacitors: Properties, Fabrication, and Applications.
    Yan Z; Luo S; Li Q; Wu ZS; Liu SF
    Adv Sci (Weinh); 2024 Feb; 11(8):e2302172. PubMed ID: 37537662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid carbon nanostructured fibers: stepping stone for intelligent textile-based electronics.
    Dhanabalan SC; Dhanabalan B; Chen X; Ponraj JS; Zhang H
    Nanoscale; 2019 Feb; 11(7):3046-3101. PubMed ID: 30720829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of High-Performance Wearable Energy and Sensor Electronics from Fiber Materials.
    Chen Y; Xu B; Gong J; Wen J; Hua T; Kan CW; Deng J
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2120-2129. PubMed ID: 30571093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics.
    Keum K; Kim JW; Hong SY; Son JG; Lee SS; Ha JS
    Adv Mater; 2020 Dec; 32(51):e2002180. PubMed ID: 32930437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances and Challenges Toward Application of Fibers and Textiles in Integrated Photovoltaic Energy Storage Devices.
    Rafique A; Ferreira I; Abbas G; Baptista AC
    Nanomicro Lett; 2023 Jan; 15(1):40. PubMed ID: 36662335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Production of 2D Material Heterostructure Textiles for High-Performance Wearable Supercapacitors.
    Islam MR; Afroj S; Karim N
    ACS Nano; 2023 Sep; 17(18):18481-18493. PubMed ID: 37695696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.
    Wen Z; Yeh MH; Guo H; Wang J; Zi Y; Xu W; Deng J; Zhu L; Wang X; Hu C; Zhu L; Sun X; Wang ZL
    Sci Adv; 2016 Oct; 2(10):e1600097. PubMed ID: 27819039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications.
    Tadesse MG; Lübben JF
    Gels; 2023 Jan; 9(2):. PubMed ID: 36826276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices.
    Teixeira JS; Costa RS; Pires AL; Pereira AM; Pereira C
    Dalton Trans; 2021 Jul; 50(29):9983-10013. PubMed ID: 34264261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Advances in Fiber Supercapacitors: Materials, Device Configurations, and Applications.
    Chen D; Jiang K; Huang T; Shen G
    Adv Mater; 2020 Feb; 32(5):e1901806. PubMed ID: 31206831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recoverable Wire-Shaped Supercapacitors with Ultrahigh Volumetric Energy Density for Multifunctional Portable and Wearable Electronics.
    Shi M; Yang C; Song X; Liu J; Zhao L; Zhang P; Gao L
    ACS Appl Mater Interfaces; 2017 May; 9(20):17051-17059. PubMed ID: 28481083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toward fiber-, paper-, and foam-based flexible solid-state supercapacitors: electrode materials and device designs.
    Liang J; Jiang C; Wu W
    Nanoscale; 2019 Apr; 11(15):7041-7061. PubMed ID: 30931460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternately Dipping Method to Prepare Graphene Fiber Electrodes for Ultra-high-Capacitance Fiber Supercapacitors.
    Qu G; Zhou Y; Zhang J; Xiong L; Yue Q; Kang Y
    iScience; 2020 Aug; 23(8):101396. PubMed ID: 32777775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emergence of fiber supercapacitors.
    Yu D; Qian Q; Wei L; Jiang W; Goh K; Wei J; Zhang J; Chen Y
    Chem Soc Rev; 2015 Feb; 44(3):647-62. PubMed ID: 25420877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.