BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 37374923)

  • 1. Sessile Lifestyle Offers Protection against Copper Stress in
    Recalde A; González-Madrid G; Acevedo-López J; Jerez CA
    Microorganisms; 2023 May; 11(6):. PubMed ID: 37374923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global effect of the lack of inorganic polyphosphate in the extremophilic archaeon Sulfolobus solfataricus: A proteomic approach.
    Soto DF; Recalde A; Orell A; Albers SV; Paradela A; Navarro CA; Jerez CA
    J Proteomics; 2019 Jan; 191():143-152. PubMed ID: 29501848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biofilm dynamics and EPS production of a thermoacidophilic bioleaching archaeon.
    Zhang R; Neu TR; Blanchard V; Vera M; Sand W
    N Biotechnol; 2019 Jul; 51():21-30. PubMed ID: 30743061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exposure to 1-Butanol Exemplifies the Response of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius to Solvent Stress.
    Benninghoff JC; Kuschmierz L; Zhou X; Albersmeier A; Pham TK; Busche T; Wright PC; Kalinowski J; Makarova KS; Bräsen C; Flemming HC; Wingender J; Siebers B
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33741627
    [No Abstract]   [Full Text] [Related]  

  • 5. The Role of Polyphosphate in Motility, Adhesion, and Biofilm Formation in
    Recalde A; van Wolferen M; Sivabalasarma S; Albers SV; Navarro CA; Jerez CA
    Microorganisms; 2021 Jan; 9(1):. PubMed ID: 33477546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Saccharolobus caldissimus gen. nov., sp. nov., a facultatively anaerobic iron-reducing hyperthermophilic archaeon isolated from an acidic terrestrial hot spring, and reclassification of Sulfolobus solfataricus as Saccharolobus solfataricus comb. nov. and Sulfolobus shibatae as Saccharolobus shibatae comb. nov.
    Sakai HD; Kurosawa N
    Int J Syst Evol Microbiol; 2018 Apr; 68(4):1271-1278. PubMed ID: 29485400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of copper and cadmium resistance determinants in the biomining thermoacidophilic archaeon Sulfolobus metallicus.
    Orell A; Remonsellez F; Arancibia R; Jerez CA
    Archaea; 2013; 2013():289236. PubMed ID: 23509422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of Initial Interfacial Steps during Chalcopyrite Bioleaching by a Thermoacidophilic Archaeon.
    Safar C; Castro C; Donati E
    Microorganisms; 2020 Jul; 8(7):. PubMed ID: 32640593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus: possible role of polyphosphate metabolism.
    Remonsellez F; Orell A; Jerez CA
    Microbiology (Reading); 2006 Jan; 152(Pt 1):59-66. PubMed ID: 16385115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis.
    Koerdt A; Orell A; Pham TK; Mukherjee J; Wlodkowski A; Karunakaran E; Biggs CA; Wright PC; Albers SV
    J Proteome Res; 2011 Sep; 10(9):4105-19. PubMed ID: 21761944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ATPases CopA and CopB both contribute to copper resistance of the thermoacidophilic archaeon Sulfolobus solfataricus.
    Völlmecke C; Drees SL; Reimann J; Albers SV; Lübben M
    Microbiology (Reading); 2012 Jun; 158(Pt 6):1622-1633. PubMed ID: 22361944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa.
    Teitzel GM; Parsek MR
    Appl Environ Microbiol; 2003 Apr; 69(4):2313-20. PubMed ID: 12676715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High copper concentration reduces biofilm formation in Acidithiobacillus ferrooxidans by decreasing production of extracellular polymeric substances and its adherence to elemental sulfur.
    Vargas-Straube MJ; Beard S; Norambuena R; Paradela A; Vera M; Jerez CA
    J Proteomics; 2020 Aug; 225():103874. PubMed ID: 32569817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses.
    Wheaton GH; Mukherjee A; Kelly RM
    Appl Environ Microbiol; 2016 Aug; 82(15):4613-4627. PubMed ID: 27208114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of Phenol as Carbon Source by the Thermoacidophilic Archaeon
    Wolf J; Koblitz J; Albersmeier A; Kalinowski J; Siebers B; Schomburg D; Neumann-Schaal M
    Front Microbiol; 2020; 11():587032. PubMed ID: 33488537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life in blue: copper resistance mechanisms of bacteria and archaea used in industrial biomining of minerals.
    Orell A; Navarro CA; Arancibia R; Mobarec JC; Jerez CA
    Biotechnol Adv; 2010; 28(6):839-48. PubMed ID: 20627124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy Metal Ion Stress on
    Völkel S; Fröls S; Pfeifer F
    Front Microbiol; 2018; 9():3157. PubMed ID: 30619221
    [No Abstract]   [Full Text] [Related]  

  • 18. Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa.
    Harrison JJ; Turner RJ; Ceri H
    Environ Microbiol; 2005 Jul; 7(7):981-94. PubMed ID: 15946294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in metabolism between the biofilm and planktonic response to metal stress.
    Booth SC; Workentine ML; Wen J; Shaykhutdinov R; Vogel HJ; Ceri H; Turner RJ; Weljie AM
    J Proteome Res; 2011 Jul; 10(7):3190-9. PubMed ID: 21561166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complementation of Sulfolobus solfataricus PBL2025 with an α-mannosidase: effects on surface attachment and biofilm formation.
    Koerdt A; Jachlewski S; Ghosh A; Wingender J; Siebers B; Albers SV
    Extremophiles; 2012 Jan; 16(1):115-25. PubMed ID: 22094829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.