BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 37375123)

  • 1. Stable High-Capacity Elemental Sulfur Cathodes with Simple Process for Lithium Sulfur Batteries.
    Sawada S; Yoshida H; Luski S; Markevich E; Salitra G; Elias Y; Aurbach D
    Molecules; 2023 Jun; 28(12):. PubMed ID: 37375123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur Vapor-Infiltrated 3D Carbon Nanotube Foam for Binder-Free High Areal Capacity Lithium-Sulfur Battery Composite Cathodes.
    Li M; Carter R; Douglas A; Oakes L; Pint CL
    ACS Nano; 2017 May; 11(5):4877-4884. PubMed ID: 28452494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Structural and Electronic Engineering of Molybdenum Disulfide Nanosheets as Carbon-Free Sulfur Hosts for Boosting Energy Density and Cycling Life of Lithium-Sulfur Batteries.
    Shen W; Li P; Zhang Q; Han E; Gu G; Wang R; Li X
    Small; 2023 Nov; 19(44):e2304122. PubMed ID: 37403292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Module-Designed Carbon-Coated Separators for High-Loading, High-Sulfur-Utilization Cathodes in Lithium-Sulfur Batteries.
    Huang YC; Yen YJ; Tseng YH; Chung SH
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Holey Graphene/Ferroelectric/Sulfur Composite Cathodes for High-Capacity Lithium-Sulfur Batteries.
    Zuluaga-Gómez CC; Plaza-Rivera CO; Tripathi B; Katiyar RK; Pradhan DK; Morell G; Lin Y; Correa M; Katiyar RS
    ACS Omega; 2023 Apr; 8(14):13097-13108. PubMed ID: 37065024
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Janus Separator of Polypropylene-Supported Cellular Graphene Framework for Sulfur Cathodes with High Utilization in Lithium-Sulfur Batteries.
    Peng HJ; Wang DW; Huang JQ; Cheng XB; Yuan Z; Wei F; Zhang Q
    Adv Sci (Weinh); 2016 Jan; 3(1):1500268. PubMed ID: 27774384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries.
    Pei F; Lin L; Ou D; Zheng Z; Mo S; Fang X; Zheng N
    Nat Commun; 2017 Sep; 8(1):482. PubMed ID: 28883525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoporous carbon-carbon nanotube-sulfur composite microspheres for high-areal-capacity lithium-sulfur battery cathodes.
    Xu T; Song J; Gordin ML; Sohn H; Yu Z; Chen S; Wang D
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11355-62. PubMed ID: 24090278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Nitridation Crafted a High-Density, Carbon-Free Heterostructure Host with Built-In Electric Field for Enhanced Energy Density Li-S Batteries.
    Wang H; Wei Y; Wang G; Pu Y; Yuan L; Liu C; Wang Q; Zhang Y; Wu H
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201823. PubMed ID: 35712758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppressing Polysulfide Dissolution via Cohesive Forces by Interwoven Carbon Nanofibers for High-Areal-Capacity Lithium-Sulfur Batteries.
    Yun JH; Kim JH; Kim DK; Lee HW
    Nano Lett; 2018 Jan; 18(1):475-481. PubMed ID: 29235876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lithium Iron Phosphate Enhances the Performance of High-Areal-Capacity Sulfur Composite Cathodes.
    Gao X; Zheng C; Shao Y; Shah VR; Jin S; Suntivich J; Joo YL
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19011-19020. PubMed ID: 37036796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Theoretically Cycling-Stable Lithium-Sulfur Battery Using a Foldable and Compositionally Heterogeneous Cathode.
    Zhong L; Yang K; Guan R; Wang L; Wang S; Han D; Xiao M; Meng Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):43640-43647. PubMed ID: 29172445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries.
    Chen M; Jiang S; Huang C; Xia J; Wang X; Xiang K; Zeng P; Zhang Y; Jamil S
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13562-13572. PubMed ID: 29616796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrahigh-Capacity Lithium-Oxygen Batteries Enabled by Dry-Pressed Holey Graphene Air Cathodes.
    Lin Y; Moitoso B; Martinez-Martinez C; Walsh ED; Lacey SD; Kim JW; Dai L; Hu L; Connell JW
    Nano Lett; 2017 May; 17(5):3252-3260. PubMed ID: 28362096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward More Reliable Lithium-Sulfur Batteries: An All-Graphene Cathode Structure.
    Fang R; Zhao S; Pei S; Qian X; Hou PX; Cheng HM; Liu C; Li F
    ACS Nano; 2016 Sep; 10(9):8676-82. PubMed ID: 27537348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binder-Free and High-Loading Cathode Realized by Hierarchical Structure for Potassium-Sulfur Batteries.
    Yang K; Kim S; Yang X; Cho M; Lee Y
    Small Methods; 2022 Jan; 6(1):e2100899. PubMed ID: 35041292
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the Pseudocapacitive Behavior of Sulfurized Polymer Electrodes for Li-S Batteries.
    Sapkota N; Chiluwal S; Parajuli P; Rowland A; Podila R
    Adv Sci (Weinh); 2023 May; 10(15):e2206901. PubMed ID: 36994629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free-Standing Mn
    Chen X; Yuan L; Hao Z; Liu X; Xiang J; Zhang Z; Huang Y; Xie J
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13406-13412. PubMed ID: 29608048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refining Interfaces between Electrolyte and Both Electrodes with Carbon Nanotube Paper for High-Loading Lithium-Sulfur Batteries.
    Peng Y; Wen Z; Liu C; Zeng J; Wang Y; Zhao J
    ACS Appl Mater Interfaces; 2019 Feb; 11(7):6986-6994. PubMed ID: 30644725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.