These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 373752)

  • 1. Glucose transport of Escherichia coli growing in glucose-limited continuous culture.
    Hunter IS; Kornberg HL
    Biochem J; 1979 Jan; 178(1):97-101. PubMed ID: 373752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short- and long-term changes in proteome composition and kinetic properties in a culture of Escherichia coli during transition from glucose-excess to glucose-limited growth conditions in continuous culture and vice versa.
    Wick LM; Quadroni M; Egli T
    Environ Microbiol; 2001 Sep; 3(9):588-99. PubMed ID: 11683869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose transport as rate-limiting step in the growth of Escherichia coli on glucose.
    Herbert D; Kornberg HL
    Biochem J; 1976 May; 156(2):477-80. PubMed ID: 782451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli.
    Kornberg HL; Reeves RE
    Biochem J; 1972 Aug; 128(5):1339-44. PubMed ID: 4345358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture.
    O'Brien RW; Neijssel OM; Tempest DW
    J Gen Microbiol; 1980 Feb; 116(2):305-14. PubMed ID: 6989955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutational adaptation of Escherichia coli to glucose limitation involves distinct evolutionary pathways in aerobic and oxygen-limited environments.
    Manch K; Notley-McRobb L; Ferenci T
    Genetics; 1999 Sep; 153(1):5-12. PubMed ID: 10471695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A continuous culture study of an ATPase-negative mutant of Escherichia coli.
    Stouthamer AH; Bettenhaussen CW
    Arch Microbiol; 1977 Jun; 113(3):185-9. PubMed ID: 141918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose uptake rates of single E. coli cells grown in glucose-limited chemostat cultures.
    Natarajan A; Srienc F
    J Microbiol Methods; 2000 Sep; 42(1):87-96. PubMed ID: 11000435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic regulation in glucose-limited chemostat cultures of Escherichia coli.
    Harvey RJ
    J Bacteriol; 1970 Nov; 104(2):698-706. PubMed ID: 4923069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The importance of the binding-protein-dependent Mgl system to the transport of glucose in Escherichia coli growing on low sugar concentrations.
    Death A; Ferenci T
    Res Microbiol; 1993 Sep; 144(7):529-37. PubMed ID: 8310178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphotransferase-mediated regulation of carbohydrate utilization in Escherichia coli K12: the nature of the iex (crr) and gsr (tgs) mutations.
    Parra F; Jones-Mortimer MC; Kornberg HL
    J Gen Microbiol; 1983 Feb; 129(2):337-48. PubMed ID: 6302201
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the sequential utilization of glucose and fructose by Escherichia coli.
    Clark B; Holms WH
    J Gen Microbiol; 1976 Aug; 96(2):191-201. PubMed ID: 182905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of glucose catabolism in Escherichia coli by a potential futile cycle.
    Patnaik R; Roof WD; Young RF; Liao JC
    J Bacteriol; 1992 Dec; 174(23):7527-32. PubMed ID: 1332936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of growth substrate and capacity for oxidative phosphorylation on respiratory oscillations in synchronous cultures of Escherichia coli K12.
    Poole RK
    J Gen Microbiol; 1977 Apr; 99(2):369-77. PubMed ID: 327024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental regulation of carbohydrate metabolism by Streptococcus sanguis NCTC 7865 grown in a chemostat.
    Marsh PD; McDermid AS; Keevil CW; Ellwood DC
    J Gen Microbiol; 1985 Oct; 131(10):2505-14. PubMed ID: 2999295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake of galactose into Escherichia coli by facilitated diffusion.
    Kornberg HL; Riordan C
    J Gen Microbiol; 1976 May; 94(1):75-89. PubMed ID: 778334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphotransferase-system enzymes as chemoreceptors for certain sugars in Escherichia coli chemotaxis.
    Adler J; Epstein W
    Proc Natl Acad Sci U S A; 1974 Jul; 71(7):2895-9. PubMed ID: 4604906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-D-glucosamine by Escherichia coli.
    White RJ
    Biochem J; 1970 Jun; 118(1):89-92. PubMed ID: 4919472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of gene expression in Escherichia coli in response to changes of growth-limiting nutrient in chemostat cultures.
    Hua Q; Yang C; Oshima T; Mori H; Shimizu K
    Appl Environ Microbiol; 2004 Apr; 70(4):2354-66. PubMed ID: 15066832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [2 phosphotransferase systems that control the second stage of phosphoenolpyruvate-dependent glucose phosphorylation in E. coli].
    Golub EI; Garaev MM
    Biokhimiia; 1975; 40(1):25-31. PubMed ID: 1095077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.