These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 37375248)
1. Evaluation and Assessment of Trivalent and Hexavalent Chromium on Boros-Lajszner E; Wyszkowska J; Kucharski J Molecules; 2023 Jun; 28(12):. PubMed ID: 37375248 [TBL] [Abstract][Full Text] [Related]
2. Modulation of hexavalent chromium toxicity on Οriganum vulgare in an acidic soil amended with peat, lime, and zeolite. Antoniadis V; Zanni AA; Levizou E; Shaheen SM; Dimirkou A; Bolan N; Rinklebe J Chemosphere; 2018 Mar; 195():291-300. PubMed ID: 29272798 [TBL] [Abstract][Full Text] [Related]
3. Hexavalent chromium-reducing plant growth-promoting rhizobacteria are utilized to bio-fortify trivalent chromium in fenugreek by promoting plant development and decreasing the toxicity of hexavalent chromium in the soil. Soni SK; Kumar G; Bajpai A; Singh R; Bajapi Y; Laxmi ; Tiwari S J Trace Elem Med Biol; 2023 Mar; 76():127116. PubMed ID: 36481602 [TBL] [Abstract][Full Text] [Related]
4. Differences in uptake and translocation of hexavalent and trivalent chromium by two species of willows. Yu XZ; Gu JD; Xing LQ Ecotoxicology; 2008 Nov; 17(8):747-55. PubMed ID: 18470609 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation. Amin H; Ahmed Arain B; Abbasi MS; Amin F; Jahangir TM; Soomro NU Int J Phytoremediation; 2019; 21(4):352-363. PubMed ID: 30638047 [TBL] [Abstract][Full Text] [Related]
6. Assessment of Tri- and Hexavalent Chromium Phytotoxicity on Oats ( Wyszkowski M; Radziemska M Water Air Soil Pollut; 2013 Jul; 224(7):1619. PubMed ID: 23853394 [TBL] [Abstract][Full Text] [Related]
7. Concomitant reduction and immobilization of chromium in relation to its bioavailability in soils. Choppala G; Bolan N; Kunhikrishnan A; Skinner W; Seshadri B Environ Sci Pollut Res Int; 2015 Jun; 22(12):8969-78. PubMed ID: 23539209 [TBL] [Abstract][Full Text] [Related]
8. [Effect of Cr(VI) stress on growth of three herbaceous plants and their Cr uptake]. Wang AY; Huang SS; Zhong GF; Xu GB; Liu ZX; Shen XB Huan Jing Ke Xue; 2012 Jun; 33(6):2028-37. PubMed ID: 22946192 [TBL] [Abstract][Full Text] [Related]
9. The applicability of compost, zeolite and calcium oxide in assisted remediation of acidic soil contaminated with Cr(III) and Cr(VI). Radziemska M; Wyszkowski M; Bęś A; Mazur Z; Jeznach J; Brtnický M Environ Sci Pollut Res Int; 2019 Jul; 26(21):21351-21362. PubMed ID: 31124067 [TBL] [Abstract][Full Text] [Related]
10. Sensitivity of Wyszkowska J; Borowik A; Zaborowska M; Kucharski J Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613625 [TBL] [Abstract][Full Text] [Related]
11. Hexavalent chromium quantification by isotope dilution mass spectrometry in potentially contaminated soils from south Italy. Caporale AG; Agrelli D; Rodríguez-González P; Adamo P; Alonso JIG Chemosphere; 2019 Oct; 233():92-100. PubMed ID: 31170588 [TBL] [Abstract][Full Text] [Related]
12. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Xiao W; Ye X; Yang X; Li T; Zhao S; Zhang Q Ecotoxicol Environ Saf; 2015 Mar; 113():439-45. PubMed ID: 25546832 [TBL] [Abstract][Full Text] [Related]
13. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles. Li Y; Wang W; Zhou L; Liu Y; Mirza ZA; Lin X Chemosphere; 2017 Feb; 169():131-138. PubMed ID: 27870934 [TBL] [Abstract][Full Text] [Related]
14. Successful Outcome of Phytostabilization in Cr(VI) Contaminated Soils Amended with Alkalizing Additives. Radziemska M; Bęś A; Gusiatin ZM; Sikorski Ł; Brtnicky M; Majewski G; Liniauskienė E; Pecina V; Datta R; Bilgin A; Mazur Z Int J Environ Res Public Health; 2020 Aug; 17(17):. PubMed ID: 32825498 [TBL] [Abstract][Full Text] [Related]
15. Increasing soil Mn abundance promotes the dissolution and oxidation of Cr(III) and increases the accumulation of Cr in rice grains. Ao M; Deng T; Sun S; Li M; Li J; Liu T; Yan B; Liu WS; Wang G; Jing D; Chao Y; Tang Y; Qiu R; Wang S Environ Int; 2023 May; 175():107939. PubMed ID: 37137179 [TBL] [Abstract][Full Text] [Related]
16. Contrasting effects of Cr(III) and Cr(VI) on lettuce grown in hydroponics and soil: Chromium and manganese speciation. Park JH Environ Pollut; 2020 Nov; 266(Pt 2):115073. PubMed ID: 32629411 [TBL] [Abstract][Full Text] [Related]
17. Varying concentrations of soil chromium (VI) for the exploration of tolerance thresholds and phytoremediation potential of the oregano (Origanum vulgare). Levizou E; Zanni AA; Antoniadis V Environ Sci Pollut Res Int; 2019 Jan; 26(1):14-23. PubMed ID: 29961221 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of hexavalent chromium in soil-plant environment using calcium silicate hydrate synthesized from coal gangue. Qing Z; Guijian L; Shuchuan P; Chuncai Z; Arif M Chemosphere; 2022 Oct; 305():135438. PubMed ID: 35750229 [TBL] [Abstract][Full Text] [Related]
19. Effect of soil pH on the transport, fractionation, and oxidation of chromium(III). Xu T; Nan F; Jiang X; Tang Y; Zeng Y; Zhang W; Shi B Ecotoxicol Environ Saf; 2020 Jun; 195():110459. PubMed ID: 32182533 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of hexavalent chromium in contaminated soil by nano-sized layered double hydroxide intercalated with diethyldithiocarbamate: Fraction distribution, plant growth, and microbial evolution. Zhang L; He F; Guan Y J Hazard Mater; 2022 May; 430():128382. PubMed ID: 35739652 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]