These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 3737622)

  • 1. Amphetamine and the overtraining reversal effect.
    Weiner I; Ben Horin E; Feldon J
    Pharmacol Biochem Behav; 1986 Jun; 24(6):1539-42. PubMed ID: 3737622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal and nonreversal shifts under amphetamine.
    Weiner I; Feldon J
    Psychopharmacology (Berl); 1986; 89(3):355-9. PubMed ID: 3088663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous brightness discrimination and reversal: the effects of amphetamine administration in the two stages.
    Weiner I; Feldon J; Ben-Shahar O
    Pharmacol Biochem Behav; 1986 Nov; 25(5):939-42. PubMed ID: 3786368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Discrimination reversal learning in rats under the treatment of chlordiazepoxide: effect of overtraining].
    Ichitani Y; Iwasaki T
    Shinrigaku Kenkyu; 1984 Aug; 55(3):176-80. PubMed ID: 6503053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facilitation of discrimination transfers under amphetamine: the relative control by S+ and S- and general transfer effects.
    Weiner I; Feldon J; Ben-Horin E
    Psychopharmacology (Berl); 1987; 93(2):261-7. PubMed ID: 3122260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. d-Amphetamine: disruptive effects on the long-term store of memory and proactive facilitatory effects on learning in inbred mice.
    Crabbe JC; Alpern HP
    Pharmacol Biochem Behav; 1975; 3(4):647-52. PubMed ID: 1187728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Problem-solving behaviour in apomorphine-susceptible and unsusceptible rats.
    Coenders CJ; Kerbusch SM; Vossen JM; Cools AR
    Physiol Behav; 1992 Aug; 52(2):321-6. PubMed ID: 1523260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphetamine promotes recovery from sensory-motor integration deficit after thrombotic infarction of the primary somatosensory rat cortex.
    Hurwitz BE; Dietrich WD; McCabe PM; Alonso O; Watson BD; Ginsberg MD; Schneiderman N
    Stroke; 1991 May; 22(5):648-54. PubMed ID: 2028496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free operant and discrete trial performance of mice in the nine-hole box apparatus: validation using amphetamine and scopolamine.
    Bensadoun JC; Brooks SP; Dunnett SB
    Psychopharmacology (Berl); 2004 Jul; 174(3):396-405. PubMed ID: 14985934
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-training intra-amygdala amphetamine injections given during acquisition of a stimulus-response (S-R) habit task enhance the expression of stimulus-reward learning: further evidence for incidental amygdala learning.
    Holahan MR; Hong NS; Chan C; McDonald RJ
    Brain Res Bull; 2005 Aug; 66(3):222-8. PubMed ID: 16023919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The acquisition, retention and reversal of spatial learning in the morris water maze task following withdrawal from an escalating dosage schedule of amphetamine in wistar rats.
    Russig H; Durrer A; Yee BK; Murphy CA; Feldon J
    Neuroscience; 2003; 119(1):167-79. PubMed ID: 12763078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulus properties of d-amphetamine as compared to l-amphetamine.
    Schechter MD
    Eur J Pharmacol; 1978 Feb; 47(4):461-4. PubMed ID: 631192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of NMDA receptors in the dorsomedial striatum on response reversal learning.
    Palencia CA; Ragozzino ME
    Neurobiol Learn Mem; 2004 Sep; 82(2):81-9. PubMed ID: 15341793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amphetamine exposure selectively enhances hippocampus-dependent spatial learning and attenuates amygdala-dependent cue learning.
    Ito R; Canseliet M
    Neuropsychopharmacology; 2010 Jun; 35(7):1440-52. PubMed ID: 20200510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of anorectic drugs in rats trained to discriminate between satiation and deprivation.
    Schechter MD
    Life Sci; 1990; 47(1):17-24. PubMed ID: 2388514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Further investigation of the discriminative stimulus properties of MDA.
    Glennon RA; Young R
    Pharmacol Biochem Behav; 1984 Apr; 20(4):501-5. PubMed ID: 6728867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure of pimozide to disrupt the acquisition of light-dark and spatial discrimination problems.
    Tombaugh TN; Szostak C; Mills P
    Psychopharmacology (Berl); 1983; 79(2-3):161-8. PubMed ID: 6405423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of trimethyltin on acquisition and reversal of a light-dark discrimination by rats.
    Woodruff ML; Baisden RH; Cannon RL; Kalbfleisch J; Freeman JN
    Physiol Behav; 1994 Jun; 55(6):1055-61. PubMed ID: 8047571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The involvement of the orbitofrontal cortex in learning under changing task contingencies.
    Kim J; Ragozzino ME
    Neurobiol Learn Mem; 2005 Mar; 83(2):125-33. PubMed ID: 15721796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of brightness discrimination in a shock avoidance task by phencyclidine and its antagonism in rats.
    Tang AH; Franklin SR
    J Pharmacol Exp Ther; 1983 Jun; 225(3):503-8. PubMed ID: 6864515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.