These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37376360)

  • 1. Composites Based on Poly(ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly(Glutamic Acid) as Biomaterials with Osteoconductive Properties.
    Solomakha O; Stepanova M; Gofman I; Nashchekina Y; Rabchinskii M; Nashchekin A; Lavrentieva A; Korzhikova-Vlakh E
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aminated Graphene-Graft-Oligo(Glutamic Acid) /Poly(ε-Caprolactone) Composites: Preparation, Characterization and Biological Evaluation.
    Stepanova M; Solomakha O; Rabchinskii M; Averianov I; Gofman I; Nashchekina Y; Antonov G; Smirnov A; Ber B; Nashchekin A; Korzhikova-Vlakh E
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D-Printed composite scaffolds based on poly(ε-caprolactone) filled with poly(glutamic acid)-modified cellulose nanocrystals for improved bone tissue regeneration.
    Averianov I; Stepanova M; Solomakha O; Gofman I; Serdobintsev M; Blum N; Kaftuirev A; Baulin I; Nashchekina J; Lavrentieva A; Vinogradova T; Korzhikov-Vlakh V; Korzhikova-Vlakh E
    J Biomed Mater Res B Appl Biomater; 2022 Nov; 110(11):2422-2437. PubMed ID: 35618683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a multi-biofunctional composite using poly(ethylenimine) decorated graphene oxide for bone tissue regeneration.
    Kumar S; Raj S; Sarkar K; Chatterjee K
    Nanoscale; 2016 Mar; 8(12):6820-36. PubMed ID: 26955801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Osteogenic Differentiation of Periodontal Ligament Stem Cells Using a Graphene Oxide-Coated Poly(ε-caprolactone) Scaffold.
    Park J; Park S; Kim JE; Jang KJ; Seonwoo H; Chung JH
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33807666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity.
    Wan C; Chen B
    Biomed Mater; 2011 Oct; 6(5):055010. PubMed ID: 21921319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical functionalization of graphene to augment stem cell osteogenesis and inhibit biofilm formation on polymer composites for orthopedic applications.
    Kumar S; Raj S; Kolanthai E; Sood AK; Sampath S; Chatterjee K
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3237-52. PubMed ID: 25584679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration.
    Patlolla A; Collins G; Arinzeh TL
    Acta Biomater; 2010 Jan; 6(1):90-101. PubMed ID: 19631769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies on thin polycaprolactone-tricalcium phosphate composite scaffolds and its interaction with mesenchymal stem cells.
    Janarthanan G; Kim IG; Chung EJ; Noh I
    Biomater Res; 2019; 23():1. PubMed ID: 30788137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of the interactions between human osteoblast-like cells and polymer composites with functionalized graphene derivatives using 2D correlation spectroscopy (2D-COS).
    Kołodziej A; Wesełucha-Birczyńska A; Długoń E; Świętek M; Gubernat M; Skalniak Ł; Błażewicz M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121862. PubMed ID: 36122465
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Conde G; de Carvalho JRG; Dias PDP; Moranza HG; Montanhim GL; Ribeiro JO; Chinelatto MA; Moraes PC; Taboga SR; Bertolo PHL; Gonçalves Funnicelli MI; Pinheiro DG; Ferraz GC
    Biomed Phys Eng Express; 2021 Mar; 7(3):. PubMed ID: 33652429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM; Molinuevo MS; Cortizo MS; Cortizo AM
    J Tissue Eng Regen Med; 2011 Jun; 5(6):e126-35. PubMed ID: 21312338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histomorphometric evaluation of 3D printed graphene oxide-enriched poly(ε-caprolactone) scaffolds for bone regeneration.
    Alazab MH; Abouelgeit SA; Aboushelib MN
    Heliyon; 2023 May; 9(5):e15844. PubMed ID: 37206001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Osteogenic Differentiation of Human Primary Mesenchymal Stem and Progenitor Cultures on Graphene Oxide/Poly(methyl methacrylate) Composite Scaffolds.
    Krukiewicz K; Putzer D; Stuendl N; Lohberger B; Awaja F
    Materials (Basel); 2020 Jul; 13(13):. PubMed ID: 32635603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology, Crystallinity, and Molecular Weight of Poly(ε-caprolactone)/Graphene Oxide Hybrids.
    Castilla-Cortázar I; Vidaurre A; Marí B; Campillo-Fernández AJ
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31261770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering.
    Hokmabad VR; Davaran S; Aghazadeh M; Alizadeh E; Salehi R; Ramazani A
    Tissue Eng Regen Med; 2018 Dec; 15(6):735-750. PubMed ID: 30603592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Impact of Polymer Grafting from a Graphene Oxide Surface on Its Compatibility with a PDMS Matrix and the Light-Induced Actuation of the Composites.
    Osicka J; Ilčíková M; Mrlik M; Minařík A; Pavlinek V; Mosnáček J
    Polymers (Basel); 2017 Jul; 9(7):. PubMed ID: 30970942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aligned poly(ε-caprolactone)/graphene oxide and reduced graphene oxide nanocomposite nanofibers: Morphological, mechanical and structural properties.
    Ramazani S; Karimi M
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():325-34. PubMed ID: 26249597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(epsilon-caprolactone) and poly(epsilon-caprolactone)-polyvinylpyrrolidone-iodine blends as ureteral biomaterials: characterisation of mechanical and surface properties, degradation and resistance to encrustation in vitro.
    Jones DS; Djokic J; McCoy CP; Gorman SP
    Biomaterials; 2002 Dec; 23(23):4449-58. PubMed ID: 12322963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.