These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37376651)
1. Novel Approach for Identification of Basic and Effective Reproduction Numbers Illustrated with COVID-19. Marinov TT; Marinova RS; Marinov RT; Shelby N Viruses; 2023 Jun; 15(6):. PubMed ID: 37376651 [TBL] [Abstract][Full Text] [Related]
2. Dynamics and asymptotic profiles of steady states of an SIRS epidemic model in spatially heterogenous environment. Zhang BX; Cai YL; Wang BX; Wang WM Math Biosci Eng; 2019 Nov; 17(1):893-909. PubMed ID: 31731383 [TBL] [Abstract][Full Text] [Related]
3. A stochastic SIR network epidemic model with preventive dropping of edges. Ball F; Britton T; Leung KY; Sirl D J Math Biol; 2019 May; 78(6):1875-1951. PubMed ID: 30868213 [TBL] [Abstract][Full Text] [Related]
4. Assessing inference of the basic reproduction number in an SIR model incorporating a growth-scaling parameter. Ganyani T; Faes C; Chowell G; Hens N Stat Med; 2018 Dec; 37(29):4490-4506. PubMed ID: 30117184 [TBL] [Abstract][Full Text] [Related]
5. Global proprieties of a delayed epidemic model with partial susceptible protection. Mezouaghi A; Djillali S; Zeb A; Nisar KS Math Biosci Eng; 2022 Jan; 19(1):209-224. PubMed ID: 34902988 [TBL] [Abstract][Full Text] [Related]
6. The epidemic model based on the approximation for third-order motifs on networks. Li J; Li W; Jin Z Math Biosci; 2018 Mar; 297():12-26. PubMed ID: 29330075 [TBL] [Abstract][Full Text] [Related]
7. Final epidemic size of a two-community SIR model with asymmetric coupling. Han Z; Wang Y; Gao S; Sun G; Wang H J Math Biol; 2024 Mar; 88(5):51. PubMed ID: 38551684 [TBL] [Abstract][Full Text] [Related]
8. The probability of epidemic burnout in the stochastic SIR model with vital dynamics. Parsons TL; Bolker BM; Dushoff J; Earn DJD Proc Natl Acad Sci U S A; 2024 Jan; 121(5):e2313708120. PubMed ID: 38277438 [TBL] [Abstract][Full Text] [Related]
9. Estimating the within-household infection rate in emerging SIR epidemics among a community of households. Ball F; Shaw L J Math Biol; 2015 Dec; 71(6-7):1705-35. PubMed ID: 25820343 [TBL] [Abstract][Full Text] [Related]
10. Final epidemic size and critical times for susceptible-infectious-recovered models with a generalized contact rate. Gao W; Wang Y; Cao J; Liu Y Chaos; 2024 Jan; 34(1):. PubMed ID: 38294886 [TBL] [Abstract][Full Text] [Related]
11. The influence of awareness on epidemic spreading on random networks. Li M; Wang M; Xue S; Ma J J Theor Biol; 2020 Feb; 486():110090. PubMed ID: 31759997 [TBL] [Abstract][Full Text] [Related]
12. An epidemic model with short-lived mixing groups. Ball F; Neal P J Math Biol; 2022 Oct; 85(6-7):63. PubMed ID: 36315292 [TBL] [Abstract][Full Text] [Related]
14. The basic reproduction number, R Neal P; Theparod T Math Biosci; 2019 Sep; 315():108224. PubMed ID: 31276681 [TBL] [Abstract][Full Text] [Related]
15. Epidemic thresholds in dynamic contact networks. Volz E; Meyers LA J R Soc Interface; 2009 Mar; 6(32):233-41. PubMed ID: 18664429 [TBL] [Abstract][Full Text] [Related]
16. Reproduction numbers for epidemic models with households and other social structures II: Comparisons and implications for vaccination. Ball F; Pellis L; Trapman P Math Biosci; 2016 Apr; 274():108-39. PubMed ID: 26845663 [TBL] [Abstract][Full Text] [Related]
17. Edge removal in random contact networks and the basic reproduction number. Koch D; Illner R; Ma J J Math Biol; 2013 Aug; 67(2):217-38. PubMed ID: 22618359 [TBL] [Abstract][Full Text] [Related]
18. The impact of media converge on complex networks on disease transmission. Liu MX; He SS; Sun YZ Math Biosci Eng; 2019 Jul; 16(6):6335-6349. PubMed ID: 31698565 [TBL] [Abstract][Full Text] [Related]
19. Global stability of an epidemic model with delay and general nonlinear incidence. McCluskey CC Math Biosci Eng; 2010 Oct; 7(4):837-50. PubMed ID: 21077711 [TBL] [Abstract][Full Text] [Related]
20. Dynamics in a reaction-diffusion epidemic model via environmental driven infection in heterogenous space. Wang N; Zhang L; Teng Z J Biol Dyn; 2022 Dec; 16(1):373-396. PubMed ID: 33724911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]